Решите уравнение sin x cos x 0

Обновлено: 04.07.2024

Доброй ночи!
Помогите мне разобраться с таким тригонометрическим уравнением: sin x + cos x = 0 решить уравнение
Заранее спасибо Вам за помощь в этом нелёгком деле, хотя на первый взгляд здесь нет ничего сложного!

На первый взгляд кажется, что решение невозможно, но это ошибочно, так как все забывают про такое свойство как деление на какой-то член. В нашем случае, мы можем поделить две части уравнения на cos x, который не должен равняться нулю, так как на ноль делить нельзя.
И получим следующее:

Так как если sin x поделить на cos x, мы получим tg x.
Теперь известные члены перенесём вправо с изменением знаков и получим:

У нас получилось простейшее тригонометрическое уравнение. Для решения этого уравнения есть определённое правило решения подобных уравнений, которое примет такой общий вид:

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:

Если бы у нас было классическое число из таблицы, которое нужно было бы найти, то мы бы с Вами воспользовались уже известной Вам таблицей. И уже исходя из этого получили бы какое-то значение, которое могли бы с Вами использовать.
И мы бы С вами продолжали решать наше уравнение. Но так как с этим не сложилось, то мы с Вами просто напросто ничего не меняем и записываем ответ в таком виде: :

Доброй ночи!
Вы попросили решить тригонометрическое уравнение. В нём нет ничего сложного, если иметь представление о базовых формулах и понятиях, которые здесь могут быть вовлечены.
Я считаю, что рациональней сразу показать шаги решения на конкретном примере, то есть Вашем: sin x — cos x = 0.
Итак, рассмотрим тригонометрическое уравнение:

Имея изначальный вид, мы сделать с этим уравнением ничего не можем. То есть надо как-то преобразовывать данное уравнение. Давайте разделим все члены уравнения на , так как на ноль делить нельзя. Из этого мы получаем, что:

Мы с Вами знаем, что:

И уже из этого получим преобразование такого вида:

Используя данные тригонометрических превращений, мы с Вами знаем, что:

Теперь можем выполнить полное преобразование:

Теперь дело за малым. Осталось использовать основные правила математики и получаем превращение в тангенс угла (tg x):

Данный калькулятор предназначен для решения тригонометрических уравнений.
Тригонометрические уравнения – это уравнения, которые содержат в себе тригонометрические функции неизвестного аргумента. Под тригонометрическими функциями понимают математические функции от величины угла. Как правило, тригонометрические функции определяются как отношения сторон прямоугольного треугольника или длины определенных отрезков в единичной окружности.

К основным видам тригонометрических уравнений относят простейшие уравнения, содержащие модуль, с параметрами, с целой и дробной частью, со сложными аргументами, с обратными тригонометрическими функциями.

С помощью калькулятора можно вычислить корни тригонометрического уравнения.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> --> Введите тригонометрическое уравнение
Решить уравнение

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу. Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек.

Тригонометрические уравнения

Уравнение cos(х) = а

Из определения косинуса следует, что \( -1 \leqslant \cos \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.

Уравнение cos x = а, где \( |a| \leqslant 1 \), имеет на отрезке \( 0 \leqslant x \leqslant \pi \) только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> \right] \); если a

Уравнение sin(х) = а

Из определения синуса следует, что \( -1 \leqslant \sin \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.

Уравнение sin х = а, где \( |a| \leqslant 1 \), на отрезке \( \left[ -\frac<\pi>; \; \frac<\pi> \right] \) имеет только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> \right] \); если а

Уравнение tg(х) = а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале \( \left( -\frac<\pi>; \; \frac<\pi> \right) \) только один корень. Если \( |a| \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> \right) \); если а

Решение тригонометрических уравнений

Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Уравнения, сводящиеся к квадратным

Решить уравнение 2 cos 2 (х) - 5 sin(х) + 1 = 0

Заменяя cos 2 (х) на 1 - sin 2 (х), получаем
2 (1 - sin 2 (х)) - 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) - 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y - 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = - 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; \( x = (-1)^n \text(0,5) + \pi n = (-1)^n \frac<\pi> + \pi n, \; n \in \mathbb \)
Ответ \( x = (-1)^n \frac<\pi> + \pi n, \; n \in \mathbb \)

Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) - 4 = 0

Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 - sin 2 (6х)) + 4 sin(6х) - 4 = 0 => 3 sin 2 (6х) - 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 - 4y +1 =0, откуда y1 = 1, y2 = 1/3

1) \( sin(6x) = 1 \Rightarrow 6x = \frac<\pi> +2\pi n \Rightarrow x = \frac<\pi> +\frac<\pi n>, \; n \in \mathbb \)
2) \( sin(6x) = \frac<1> \Rightarrow 6x = (-1)^n \text \frac<1> +\pi n \Rightarrow \)
\( \Rightarrow x = \frac \text \frac<1> +\frac<\pi n>, \; n \in \mathbb \)
Ответ \( x = \frac<\pi> +\frac<\pi n>, \;\; x = \frac \text \frac +\frac<\pi n>, \; n \in \mathbb \)

Уравнение вида a sin(x) + b cos(x) = c

Решить уравнение 2 sin(x) + cos(x) - 2 = 0

Используя формулы \( \sin(x) = 2\sin\frac \cos\frac, \; \cos(x) = \cos^2 \frac -\sin^2 \frac \) и записывая правую часть уравпения в виде \( 2 = 2 \cdot 1 = 2 \left( \sin^2 \frac + \cos^2 \frac \right) \) получаем

\( 4\sin\frac \cos\frac + \cos^2 \frac - \sin^2 \frac = 2\sin^2 \frac + 2\cos^2 \frac \)

Поделив это уравнение на \( \cos^2 \frac \) получим равносильное уравнение \( 3 \text^2\frac - 4 \text\frac +1 = 0 \)
Обозначая \( \text\frac = y \) получаем уравнение 3y 2 - 4y + 1 = 0, откуда y1=1, y1= 1/3

1) \( \text\frac = 1 \Rightarrow \frac = \frac<\pi> +\pi n \Rightarrow x = \frac<\pi> +2\pi n, \; n \in \mathbb \)
2) \( \text\frac = \frac \Rightarrow \frac = \text\frac +\pi n \Rightarrow x = 2 \text \frac +2\pi n, \; n \in \mathbb \)
Ответ \( x = \frac<\pi> +2\pi n, \;\; x = 2 \text \frac +2\pi n, \; n \in \mathbb \)

В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях \( a \neq 0, \; b \neq 0, \; c \neq 0, \; c^2 \leqslant b^2+c^2 \) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на \( \sqrt \):

Введём вспомогательный аргумент \( \varphi \), такой, что Таким образом, уравнение можно записать в виде
\( \sin x \cos \varphi + \cos x \sin \varphi = \frac> \)
откуда Изложенный метод преобразования уравнения вида a sin(x) + b cos(x) = c к простейшему тригонометрическому уравнению называется методом введения вспомогательного угла.

Решить уравнение 4 sin(x) + 3 cos(x) = 5

Здесь a = 4, b = 3, \( \sqrt = 5 \). Поделим обе части уравнения на 5:

\( \frac<4>\sin(x) + \frac\cos(x) = 1 \)
Введём вспомогательный аргумент \( \varphi \), такой, что \( \cos \varphi = \frac<4>, \; \sin \varphi = \frac \) Исходное уравнение можно записать в виде
\( \sin x \cos \varphi + \cos x \sin \varphi = 1, \;\; \sin(x+\varphi) = 1 \)
откуда

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Решить уравнение sin(2х) - sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) - sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x - 1) = 0

2) \( 2 \cos(x) -1 =0, \; \cos(x) = \frac12, \; x = \pm \frac<\pi> +2\pi n, \; n \in \mathbb \)

Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х - х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0

Заметим, что числа \( \pi n \) содержатся среди чисел вида \( x = \frac<\pi n>, \; n \in \mathbb \)
Следовательно, первая серия корней содержится во второй.

Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) - sin 2 (x), то
cos(2x) = 1 - sin 2 (x) - sin 2 (x), cos(2x) = 1 - 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 - cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 - cos(2x)) + 2 (1 - cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0

Читайте также: