Как boston dynamics создавала робота atlas как устроен самый крутой робот в мире

Обновлено: 04.07.2024


В научной фантастике, особенно в классических произведениях американских писателей середины прошлого века, очень часто встречаются роботы. Чаще всего они помогают человеку, иногда живут сами по себе, а порой даже воюют с людьми, которые их создали. Но практически всегда — это прямоходящие антропоморфные машины, с двумя ногами и с двумя руками. Удивления достойно то, с каким упорством писатели и сценаристы фильмов стараются наделить машины человеческими чертами.

Современные роботы куда практичнее, они максимально приспособлены для какой-нибудь узкой задачи и выглядят максимально не похоже на людей.

Но есть одна компания, которая, вопреки всем соображениям практичности, создает роботов, максимально похожих на человека и животных — Boston Dynamics. А недавно они научили своего робота танцевать!

Это не компьютерная графика, ролик сделан с настоящими роботами, которые реально выполняют именно то, что видно на экране. Первые две минуты сняты одним кадром, без склеек и монтажа. Даже антураж специально выбран для подчеркивания максимального реализма. Это не хромакей и не гламурная сцена. Это ничем не украшенный испытательный зал лаборатории, за стеклом которого можно разглядеть какие-то станки и механизмы, обычные рабочие места, разметку на полу для видеооператора.

Изящные движения, высокие прыжки, синхронные действия, — все это идеально демонстрирует возможности современной робототехники. Как же в Boston Dynamics (BD) добились такого успеха? В этой статье я предлагаю вам краткий экскурс по истории компании, ее успехах и неудачах, а также немного расскажу о том, как снимался этот танец роботов.

В детстве я прочитал один фантастический рассказ, в котором инженер создал самовоспроизводящихся и самообучающихся роботов, а они устроили небольшую войну между собой, борясь за высокотехнологичные ресурсы для апгрейда. В этом рассказе мне запомнилась одна деталь: первый робот, получив самостоятельность, заменил практичный антигравитационный привод на примитивные ноги, как у своего создателя. Инженер был категорически против, но робот не стал слушать его аргументов. Впоследствии это сыграло с роботом злую шутку: он споткнулся во время сражения и был раздавлен сородичами, чего не произошло бы, оставь он антиграв.

Практически все современные роботы, на колесах или же на гусеницах, это просто и надежно. Нет проблем с равновесием, эксплуатация чаще всего ограничивается помещениями с ровным полом.

Роботы на складе Amazon

BD решили воплотить в реальность мечту научных фантастов:

Робот Atlas

Первая коммерческая модель

Сравнительно недавно на сайте компании открылся раздел с магазином, и BD, впервые за почти 30 лет, предлагает коммерческую модель: Spot. Несмотря на собачью кличку (Спот — пятнышко), робот предлагается для коммерческого использования на индустриальных объектах и не предназначается для домашней эксплуатации. Скромные размеры (робот немного больше Немецкой овчарки), предполагают скромные возможности: всего полтора часа в активном режиме, в то время как аккумулятор заряжается два часа.

Над дизайном очень хорошо поработали. Робот уже не напоминает Терминатора и двигается довольно изящно, его конечности не топчутся на месте, как у прошлых версий четвероногих роботов. Цена в базовой комплектации — $75.000. Сложно сказать, много это или мало, потому что подобных предложений на рынке можно пересчитать по пальцам одной руки. Несмотря на пандемию и общий спад, компания заявляет, что произвела около 400 роботов этой модели и не собирается останавливаться на достигнутом.

Новый робот Atlas Boston Dynamics

Atlas - единственный робот на Земле, который может выполнять трюки с точностью до 80%.

От лаборатории к компании. Работа на военных

Время не стоит на месте. Чтобы получить больше финансовой независимости, Марк в 1995 году принимает решение покинуть Университет. Он окончательно уходит в собственную компанию, основанную в 1992 году. Название этой фирмы сейчас на слуху даже у тех, кто не интересуется современными технологиями, благодаря зрелищным видео, демонстрирующих достижения современной робототехники: Boston Dynamics.

Как и в самом начале своей карьеры, Марк получает финансирование от военных. DARPA дает его компании задания на разработку «рабочего мула», который сможет переносить значительные грузы по местности, где обычным машинам не проехать. По ТЗ робот должен уметь карабкаться, преодолевая значительный уклон, преодолевать заросли кустарника, проходить по скользким и сыпучим поверхностям, то есть уметь все то, на что способен пехотинец или… мул.

Выполнение этого задания было делом не простым. Только в 2005 году была представлена модель BigDog.

До сего момента наиболее широко известные модели шагающих роботов были чисто развлекательными изделиями при передвижении, неуклюжими и неповоротливыми. Они падали от малейшего толчка, а передвигаться могли только по идеально ровному полу. Но BigDog выглядел как машина из будущего, универсальная практичная. Люди были заворожены зрелищем автономного механизма шагающим как живое существо и способным переносить значительный груз. Детище компании Марка полностью соответствовало завету легендарного Артура Кларка: «Любая достаточно развитая технология неотличима от магии». Дошло даже до того, что люди снимали пародии на это механическое существо:

К сожалению, технически робот был не настолько успешен, как можно было судить по видео. Даже второе поколение, выпущенное в 2008 году, имело слишком много недостатков. В 2013 году Министерство обороны США отказалось от продолжения этой программы. Одной из главных проблем был сильный и демаскирующий шум двигателя внутреннего сгорания, от которого инженерам так и не удалось избавиться. Вторая проблема была в том, что несмотря на формальное выполнение ТЗ, характеристики робота все-таки были недостаточны для того, чтобы полноценно участвовать в реальных боевых задачах. Проходимость хоть и впечатляла, но военным ее не хватало. Автономность составляла всего 30 км, это расстояние робот проходил со скоростью пешехода. Поскольку робот был технически чрезвычайно сложным устройством, опытные образцы имели серьезные проблемы с надежностью. Первые варианты едва выдерживали полчаса непрерывной работы, прежде чем в механизме что-то ломалось, и он становился неспособным к дальнейшему функционированию. Последние модели робота уверенно работали до трех часов, но это все равно чрезвычайно мало, а отремонтировать такое сложное устройство в полевых условиях практически невозможно. Поломка поставила бы под угрозу любую реальную боевую операцию, если бы в ней возлагались большие надежды на этого помощника. Кроме того, производство робота было очень и очень дорогим.

Тем не менее, хоть от развития этой модели отказались, военные не прекратили сотрудничество с BD. В продолжении исследований было выпущено еще несколько разновидностей шагающих, бегающих, даже прыгающих и ползающих роботов.

На тумбе стоит Little Dog (младший электрический брат BigDog), Spot, BigDog, WildCat, LS3 (старший военный брат BigDog)

SANDFLEA — Блоха.

Робот-кроха (15 см в высоту), способный подпрыгивать на высоту более двух метров с помощью баллончика со сжатым газом.

По размерам, примерно как SANDFLEA, способен перебираться через небольшие препятствия и ползать даже по болотистой местности.

Как устроен самый сложный робот на Земле?

Когда сейчас речь заходит о роботах, уже кажется никто не представляет себе кадры из «Терминатора». Люди научились использовать роботов на благо общества, и сейчас под этим определением скрываются не только человекоподобные машины, но и также те, которые просто способны автоматизировать тот или иной процесс. Огромные промышленные роботы используются на добывающих предприятиях, заводах по сборке автомобилей и бытовой техники, а небольшие их аналоги поселились у некоторых дома. Но есть ли самый сложный робот на Земле? И если да, как он выглядит и работает?


Робот Atlas не всегда был похож на человека

Зачем нужны роботы

Сейчас, например, роботы Boston Dynamics помогают в борьбе с коронавирусом в США.

Современная робототехника развивается семимильными шагами. Глядя на разработки одной лишь компании Boston Dynamics, волей-неволей начинаешь верить в то, что недалёк тот день, когда человекоподобные роботы будут жить среди людей. Если раньше подобное можно было увидеть лишь в фантастических фильмах, то теперь антропоморфные роботы передвигаются по пересечённой местности, взаимодействуют с объектами и вообще ведут себя очень похоже на людей.

Boston Dynamics продемонстрировала новую версию робота Atlas

Новая версия двуногого робота Atlas, продемонстрированная в видео чуть ниже, предназначена для работы как внутри помещений, так и на открытом воздухе. Работает он от мобильного аккумулятора, без каких-либо проводов, тянущихся к его корпусу. Как и прежде, робот виртуозно балансирует, чтобы не потерять равновесие и не упасть при ходьбе. Но даже если его очень сильно толкнуть и свалить с ног, он умеет самостоятельно подниматься с земли.

Для навигации в пространстве Atlas использует стереоскопические видеокамеры и оптические датчики LIDAR, использующиеся в автомобилестроении. Новая версия робота имеет рост около 180 сантиметров (на целую голову ниже предыдущей модели), а вес его составляет 81,5 килограмм. Робот способен обнаруживать и идентифицировать различные объекты, взаимодействовать с ними и ориентироваться в пространстве, находя оптимальный путь из одной точки в другую.

Танец

После того, как вспомнили историю компании и рассмотрели некоторые модели роботов, можно немного поговорить о том, как же создавался зажигательный танец. Для этого я подготовил сокращенную версию интервью с Аароном Сондерсом, вице-президентом по инженерным вопросам Boston Dynamics, которое взял у него журнал IEEE Spectrum, издаваемый американским «Институтом инженеров по электронике и электротехнике».

Рок-н-ролльный сингл, который звучит в ролике, был записан группой The Contours в 1962 году. Песня «Do You Love Me» — одно из самых известных их произведений. Хореографом выступила Моника Томас из коллектива MAD KING THOMAS.

До этого момента, роботы и инженеры BD никогда не занимались ничем подобным. Имеющийся набор движений включает много элементов ходьбы, бега и прыжков, некоторые упражнения из гимнастики и даже паркура. Но заставить механизмы плясать еще никто не пробовал. Изначально танец создавался при помощи программы компьютерного моделирования, в которой проводили адаптацию человеческих танцевальных движений под физические возможности роботов. После того, как выбиралось то или иное движение, симуляцию показывали инженерам. Они смотрели на экран и говорили что-то вроде: «Это будет легко!», или: «Это будет сложно!», или: «Это меня пугает!». По мере работы над проектом был разработан набор инструментов, с помощью которых программировались балетные движения роботов на высоком уровне. Таким образом, танец показанный в ролике, — это не скрипт, где вручную записываются все мельчайшие детали, это продукт работы программного конвейера, объединяющего отдельно разработанные элементы и преобразующего их в массив данных, которые потом загружаются в машину.

Сложнее всего было запрограммировать вращательные движения, потому что они больше всего отличаются от элементов, которые используются при беге и прыжках. Тем не менее, ловкость и баланс, которые необходимы для выполнения уже отработанных движений, оказались достаточными для программирования танца. До этого эксперимента основной упор был сделан на движении ног, прыжках и беге. В этом случае больше всего используется нижняя часть тела роботов. Следующий шаг усложнения моделей поведения — развитие танцевальных движений, использование рук для того, чтобы толкать или тянуть. Одной из новых задач, поставленных перед командой, было расширение мобильности за счет верхней части тела робота.

В Атласах не используются контроллеры с машинным обучением, но в них используется то, что в компании называют рефлексивным управлением (предиктивные контроллеры работающие с прогнозирующими моделями, учитывающие динамику и равновесие, оптимизируя траекторию в режимах онлайн и оффлайн).

Этот эксперимент позволил много узнать о надежности роботов и их возможностях. Коммерческий робот Спот, в отличии от чисто исследовательских моделей Атлас, разрабатывался для непрерывной эксплуатации. Он показал отличные результаты и мог танцевать целый день, почти не требуя обслуживания. Атласов же сделано всего несколько экземпляров, они не предназначены для длительной и непрерывной работы. В этом отношении они больше похожи на вертолет, у которого время подготовки и технического обслуживания больше, чем время полета. Спот больше походит на автомобиль, который больше ездит, чем обслуживается.

Атласы пришлось специально модифицировать для этой программы, увеличив их мощность. Хотя трюки и прыжки с перекатами, который демонстрируют эти роботы, выглядят очень резкими, движения в танце требуют еще больше скорости и силы.

Сложно сказать, как дальше будет развиваться компания. Сам Марк уже не молод, ему 71 год. Google не смогла найти в BD коммерческий потенциал. Когда Softbank покупала компанию, сумма сделки не разглашалась, потому сложно сказать, выгодной ли была продажа BD корейскому автомобильному гиганту, или нет. Никаких особых коммерческих успехов за то время, что компания провела с Softbank, вроде бы, не наблюдалось. Hyundai надеется использовать компанию для развития автопилотов в своих машинах и роботизации производства. Может, ей удастся извлечь практическую выгоду из союза с BD.

Дело в том, что Марк и его коллеги — это Ученые, с большой буквы. Они занимаются исследованиями в чистом виде, не задумываясь о монетизации своих знаний. Теоретические знания полученные за тридцать лет огромны. Найдется ли им практическое применение в ближайшем будущем, сказать очень сложно. Хоть и кажется, что это прикладные инженерные исследования, труды по которым лежали невостребованные столетиями, что далеки от теоретической физики и высшей математики, у них много общего. Например, одно из главных ограничений, это питание. Экспериментальный робот Гепард даже не задумывался для автономного использования. Это был испытательный стенд для обкатки технологий, не работающий без постоянного подключения к розетке. У БольшогоПса основной проблемой был двигатель внутреннего сгорания, у Пятнышка автономность (всего полтора часа, даже без учета навесного оборудования), и скорость как у пешехода.

Может, использование машинного обучения в контроллерах приведет к очередному техническому прорыву, может, изобретут более емкие и компактные источники питания. Сложно предсказать будущее компании. Пожелаем им удачи!

Финансовые вопросы

Работая с военными, компания несколько раз переходила из рук в руки. В конце 2013 года компанию купил Google. Сложно сказать зачем они это сделали. Возможно просто в процессе скупки разных компаний вместе с несколькими другими робототехническими компаниями и стартапами, возможно в погоне за портфелями патентов и в расчете на прибыль. За время сотрудничества BD и Google не смогли найти общий язык. После того, как Google покинул Энди Рубин, который выступил инициатором сделки, будущее компании оказалось подвешенным. Сам Энди говорил, что его разочаровала скорость разработки, ведь даже на предварительные исследования уходило очень много времени. В интернет-гиганте не желали вкладывать столько денег в компанию, коммерческих результатов от которой приходится ждать 10 лет и больше. Вдобавок, видео, в котором последнюю модель человекообразного робота толкают и сбивают с ног, не понравилось рекламному отделу Google

(На 1,22 робота толкают клюшкой и «отбирают» коробку, на 2,04 его сбивают с ног толчком в спину)

Кроме того, антропоморфность робота вызвала удивительное сопереживание у зрителей, которые разглядели в демонстрации алгоритмов баланса — издевательства и сочувствовали роботу.

В интернет попало письмо, написанное руководителем PR-отдела Google Кортни Хон, в котором она пишет, что человекоподобные роботы напрягают людей тем, что они видят в них угрозу, будто эти роботы способны отнять у них работу. Наконец, в 2016 году Google решает продать BD. По слухам, купить компанию хотели Amazon и Toyota. В итоге она досталась японскому холдингу Softbank.

На этом финансовые приключения BD не закончились. Совсем недавно стало известно, что компания в очередной раз продается. В декабре прошлого года Softbank с Hyundai сошлись на скромной сумме, около миллиарда долларов.

Тем не менее, все это не мешало разрабатывать новых роботов. Кроме Atlas, над которым издевались клюшкой, был разработан робот с гибридным способом передвижения: Handle. Ноги робота заканчиваются колесами, которые позволяют ему быстро перемещаться по ровной поверхности, спускаться по лестницам. При необходимости он может даже подпрыгнуть

Как создавался самый сложный робот

Такого робота создали почти 7 лет назад, и его постоянно дорабатывают, поэтому пока никому не удалось его переплюнуть. Агентство по передовым оборонным научно-исследовательским проектам США (DARPA) совместно с компанией Boston Dynamics разработали человекоподобного робота Atlas. Он отлично ориентируется в пространстве и имеет 28 гидравлических суставов, множество сенсоров и передовую систему управления.


Так выглядел прототип первого робота Atlas

В Boston Dynamics говорят, что изначально роботом управлял оператор, для того, чтобы создать трехмерную карту области передвижения. Однако затем гуманоид смог передвигаться самостоятельно с уже внесенной в его базу информацией об окружении и препятствиях на пути.

Как работает робот Atlas от Boston Dynamics?

Как Boston Dynamics удалось научить робота Atlas бегать, прыгать, делать сальто и танцевальные па? О секретах робота рассказали основатель Boston Dynamics Марк Райберт и инженер компании Скотт Куиндерсма. Это статья подготовлена по материалам их выступления. Но как говорится, лучше 1 раз увидеть, чем 100 раз прочитать, поэтому смотрите наше видео:

Говоря об умных роботах, первое, что надо понимать, что у машин, как и у людей, есть два типа интеллекта: двигательный и когнитивный. Когнитивный интеллект позволяет осознать проблему и понять, как ее решить. Двигательный интеллект позволяет управлять телом, не задумываясь о том, как ходить или прыгать, управлять своей энергией, рассчитывая силы на то или иное действие, а также воспринять информацию в реальном времени для взаимодействия с окружающей средой.

Подход Boston Dynamics к своим роботам заключается в том, чтобы сначала создать надежный и работоспособный в любых обстоятельствах двигательный интеллект. Далее приступать к созданию когнитивного, которому будет проще планировать действия робота, опираясь на развитый двигательный интеллект. И затем инженеры должны наладить взаимодействие двигательного и когнитивного интеллектов.


Atlas использует свое восприятие в реальном времени для того, чтобы определить местонахождение препятствий, выбрать места опоры для ступней и координировать перенос массы тела во время движения, удерживаясь на ногах. Atlas воспринимает свое окружение так, как вы сейчас видите на экране. Во время своего движения он решает, есть ли возможность избежать препятствие, и регулирует положение тела, опираясь на расчетную траекторию, но учитывая обратную связь при выполнении расчетных действий.


Такой результат обеспечивается не только программным обеспечением и элементами управления, но и конструкцией робота. Самой важной деталью робота является очень компактный гидравлический силовой агрегат массой всего 5 кг и мощностью 5 кВт. Он разработан Boston Dynamics и вмещает электродвигатель, насос, резервуар, аккумулятор, несколько фильтров, электронику и систему охлаждения. Все это помещено в прочный корпус и размещено прямо внутри робота. Агрегат питается от легкой батареи емкость 1400 ватт*час, также разработанной Boston Dynamics. Прочный корпус не позволит аккумулятору загореться, если робот упадет.


Инженерам компании вообще многое пришлось создавать с нуля. И пространственную конструкцию рамы и ног, которые должны быть легкими, но очень прочными. И легкие гидравлические сервоклапаны особой конструкции. И, напечатанный на 3Д принтере гидравлический коллектор, вмещающий все 18 клапанов, а также сразу содержащий в своей структуре напечатанные фитинги и шланги, чтобы максимально облегчить конструкцию.


Робот контролирует свое передвижение в реальном времени с помощью камер, расположенных на передней части его условной головы. В руках и ногах робота в общей сложности 28 суставов. В области таза и по всему телу робота размещены датчики, которые измеряют ускорение робота, положение его тела в пространстве при движении и другие параметры его взаимодействия с окружающим миром.

Робот активно балансирует во время ходьбы, бега и трюков. Он умеет использовать силу инерции, чтобы экономить энергию. Он осматривает местность и ощущает ее через сенсоры в стопах, одновременно регулируя силу, прилагаемую ногами к земле. Каждый прыжок, кувырок или сальто требует от робота массы вычислений. Инженеры подчеркивают, что все роботы компании держат равновесие самостоятельно. Это означает, что если вы толкнете любого из них, то он отреагирует как человек, сделав шаг в сторону.


Atlas не выбирает, что ему делать. Команды отдает оператор. Он нажимает кнопки, подсказывая роботу, что здесь надо прыгнуть, здесь сделать сальто, а тут повернуться. Но вычислять, как именно сделать такое движение в данных условиях из текущего положения, роботу приходится самому. Как это ему удается? Давайте рассмотрим, как программируют и создают элементы управления для робота.

Подход Boston Dynamics к программированию основан на прогнозирующей модели. Это означает, что исследователи используют всю имеющуюся у них информацию о роботе для того, чтобы разработать алгоритмы управления динамическими характеристиками. Также они проводят очень много предварительных вычислений всего, что может пригодиться роботу для выполнения той или иной задачи.

Например, для Atlas создана целая библиотека предварительно рассчитанных траекторий движения. Система управления роботом берет информацию о предварительно рассчитанных траекториях и адаптирует ее к текущим условиям, информацию о которых собирает система восприятия. Atlas выбирает из библиотеки подходящую для выполнения задачи траекторию, а затем изменяет ее в соответствии с текущими условиями.Пока робот не может обучаться новым движениям самостоятельно, на основе предыдущего опыта, а действует строго по запрограммированным моделям. Хотя инженеры Boston Dynamics наверняка уже думают о его самообучении.


Что касается системы восприятии робота, то здесь Boston Dynamics использует геометрическую сегментацию. Робот буквально разбивает окружающее пространство на локальные области с простыми геометрическими формами. Эти формы становятся входными данными для системы планирования, которая продумывает несколько шагов вперед так, чтобы робот удержал равновесие, правильно использовав свои руки и ноги. Но эта информация не является статичной, она изменяется в режиме реального времени, позволяя роботу лучше приспосабливаться к условиям и избегать ошибок предварительных расчетов.

Большой плюс робота Atlas в том, что раз научившись делать сальто он изо дня в день может делать его точно так же, с той же эффективность. Это помогло инженерам в создании потрясающего видео танцующих роботов.


Чтобы научить Atlas танцевать, компания привлекла хореографа. Предварительная работа заключалась в том, чтобы определить, какие идеи настоящего танцора можно попытаться реализовать с помощью робота. Инженеры использовали моделирование, чтобы быстро перебрать концепции движения, которые по силам выполнить роботу. Идеи сначала реализовывали в симуляции, вносили коррективы, а затем пробовали на роботе. Инженеры описывают процесс, как конвейер. Когда множество разнообразных движений описывалось множеством входных данных и реализовывалось роботом. В итоге, на создание танца потребовалось несколько месяцев напряженной работы.

В Boston Dynamics признают, что надежность робота Atlas пока нельзя сравнить с тем же показателем робота Спот. Его обслуживание занимает много времени, но инженеры не собираются останавливаться. Так, скоро Atlas научится работать руками. Не просто переставлять коробки или балансировать с помощью рук, а полноценно выполнять сложные задачи, чтобы руки робота стали такими же ловкими, как и ноги. А вы как думаете, чему еще следует научится самому продвинутому роботу в мире?

Если вы хотите сами посмотреть презентацию Марка Райберта и Скотта Куиндерсма, то вот ссылочка.

Как устроен самый сложный робот


Максимальная скорость передвижения робота Atlas составляет 1,5 м/с или 5,4 км/ч, что сравнимо со скоростью ходьбы человека.

Некоторым в нашем Telegram-чате показалось, что робот обладает интеллектом, однако это не так. Его программное обеспечение было полностью написано инженерами, которые могут управлять роботом с помощью макрокоманд (например, заставить его бежать, присесть, сделать шаг и так далее). То есть он либо управляется «с пульта», либо просто выполняет запрограммированные команды. Команды уже преобразуются в микродействия и алгоритмы конечностей для обеспечения этих движений. Управляется гуманоид с помощью роботехнической операционной системы (ROS — Robotics Operating System). Большинство расширений для него написаны на языках программирования C++ и Python. Правда, официально эту информацию не подтверждали — Boston Dynamics держит очень много секретов. Еще бы, ведь это самый сложный робот в мире.

Как все начиналось

Эволюция человека и животных наглядно доказала, насколько универсальны конечности. С их помощью можно ходить, бегать, карабкаться по склонам гор и стволам деревьев, шагать по лестнице. Приматы зашли в этой универсальности дальше всего.

Долгое время прямохождение не давалось инженерам. Гироскопы были слишком громоздкие, аналоги компактного вестибулярного аппарата с обратной связью не получалось создать из-за примитивной электронно-технической базы. Но появление доступных микроконтроллеров позволило воплотить в реальность эту мечту инженеров. Из всех коллективов, занимающихся шагающими роботами, известнее всего Boston Dynamics.

Вдохновителем и бессменным руководителем этой лаборатории является Марк Рэйберт.

Марк Рэйберт

В 1973 году он закончил Бостонский Северо-Восточный университет по специальности «Электротехника», а в 1979 получил субсидию на разработку первой прыгающей машины, от известного американского ученого и изобретателя Айвена Сазерленда.

Айвен Сазерленд

В 1980 году он сумел заинтересовать своей разработкой DARPA (тогда еще ARPA), получил от них первое финансирование и открыл Leg Laboratory. Первоначально она располагалась в Университете Карнеги-Меллона, где Марк работал профессором, а потом, вслед за ним, переехала в Массачусетский Технологический.

Leg Laboratory

На сайте MTI еще сохранилась страничка этого научного коллектива, созданная задолго до современных трендов дизайна и веб-разработки. Теплый и ламповый web1 выглядит довольно трогательно. Очень рекомендую зайти по ссылке и посмотреть, с чего начиналась история этого известного научного коллектива.

В 1983 году была готова их разработка под названием «3D One-Leg Hopper»:

Одноногий прыгун мог балансировать или передвигаться прыжками в заданном направлении и сохранять равновесие, если его пытались уронить. Необычный способ передвижения был выбран, потому что обсчитывать балансировку на одной ноге проще всего.

На следующем видео можно посмотреть роботов созданных в Leg Laboratory. Все они чисто исследовательские механизмы, без всякой практической ценности, созданные исключительно для изучения работы суставов, приводов на разном принципе работы и математических алгоритмов движения. Некоторые являются составляющими частями более сложных конструкций. Часть из них не способна сохранять равновесие самостоятельно и движется с помощью штанги с противовесом. «Голые» роботы заставляют вспомнить фильм про Терминатора, а интерьеры лаборатории — мастерскую Джейме и Адама из «Разрушителей мифов»

Накопленный опыт исследований Марк выразил в своей книге Legged Robots That Balance, вышедшей в 1986 году.

Читайте также: