С какой космологическая моделью сегодня сочетают теорию большого взрыва

Обновлено: 08.07.2024

Теория большого взрыва - это на сегодня главное объяснение того, как возникла Вселенная. В самом простом виде он говорит, что Вселенная в том виде, в каком мы ее знаем, началась с бесконечно горячей, бесконечно плотной сингулярности, а затем раздувалась - сначала с невообразимой скоростью, а затем с более измеримой скоростью - в течение следующих 13,8 миллиардов лет до космоса, который мы знаем сегодня.

Снимок компьютерного моделирования формирования крупномасштабных структур во Вселенной, показывающий участок в 100 миллионов световых лет и результирующие когерентные движения галактик, текущих к самой высокой концентрации массы в центре. Снимок компьютерного моделирования формирования крупномасштабных структур во Вселенной, показывающий участок в 100 миллионов световых лет и результирующие когерентные движения галактик, текущих к самой высокой концентрации массы в центре.

Космологическая сингулярность

Иначе, это то состояние, которое имела Вселенная в самый первый миг Большого взрыва. Оно характеризуется наличием бесконечных значений плотности и температуры вещества. Это состояние, ставшее примером сингулярности гравитационной, предсказано Эйнштейном в положениях общей теории относительности. Невероятно сложно представить, что Солнце можно сжать до размеров атомного ядра, но ещё труднее вообразить, что вся Вселенная была спрессована до точки, размер которой был много меньше этого ядрышка. Тем не менее, Вселенная возникла из такого объекта, именуемого сингулярностью. Этот вариант событий математически просчитан и является основной теорией возникновения Вселенной.

Космологическая сингулярность – теоретическое построение некоего состояния, в котором находилась Вселенная в начальный момент Большого Взрыва. Особенность этого состояния в том, что оно характеризуется бесконечной плотностью и одновременно бесконечной температурой. Космологическая сингулярность – теоретическое построение некоего состояния, в котором находилась Вселенная в начальный момент Большого Взрыва. Особенность этого состояния в том, что оно характеризуется бесконечной плотностью и одновременно бесконечной температурой.

Открытие реликтового излучения

Астрономы обнаружили первую долю секунды Вселенной

Зонд микроволновой анизотропии Уилкинсона (WMAP) дал новую, более подробную картину молодой Вселенной. Цвета указывают на «более теплые» (красные) и «более прохладные» (синие) пятна. Белые полосы показывают направление «поляризации» самого старого света. Эта новая информация помогает точно определить, когда образовались первые звезды, и дает новые подсказки о событиях, которые произошли в первую триллионную долю секунды Вселенной. Зонд микроволновой анизотропии Уилкинсона (WMAP) дал новую, более подробную картину молодой Вселенной. Цвета указывают на «более теплые» (красные) и «более прохладные» (синие) пятна. Белые полосы показывают направление «поляризации» самого старого света. Эта новая информация помогает точно определить, когда образовались первые звезды, и дает новые подсказки о событиях, которые произошли в первую триллионную долю секунды Вселенной.

Поскольку современные инструменты не позволяют астрономам буквально вглядываться в процесс рождения Вселенной, многое из того, что мы понимаем в теории Большого взрыва, основано на математических формулах и моделях. Однако астрономы могут видеть «эхо» расширения через явление, известное как космический микроволновый фон, называемое реликтовым излучением .

В 1960-е два американских физика из Принстонского университета, Боб Дикке и Джим Пиблс, занимались исследованием микроволн. Они проверяли предположение Джорджа Гамова о том, что ранняя Вселенная была очень горячей, плотной и раскаленной добела. Дикке и Пиблс высказали ту мысль, что мы можем видеть свечение ранней Вселенной, ибо свет, испущенный очень далекими ее областями, мог бы дойти до нас только сейчас. Но из-за расширения Вселенной красное смещение светового спектра должно быть так велико, что дошедший до нас свет будет уже микроволновым (СВЧ) излучением. Дикке и Пиблс готовились к поиску такого излучения, когда Пензиас и Вильсон, узнав о работе Дикке и Пиблса, сообразили, что они его уже нашли. За этот эксперимент Пензиас и Вильсон были удостоены Нобелевской премии 1978 г.

Арно Пензиас и Роберт Уилсон - американские физики, открыватели реликтового излучения Арно Пензиас и Роберт Уилсон - американские физики, открыватели реликтового излучения

Ранее в 1965 г. два американских физика, Арно Пензиас и Роберт Вильсон , работавших на фирме Bell Laboratories в шт. Нью-Джерси, испытывали очень чувствительный "микроволновый", т. е. сверхвысокочастотный (СВЧ), детектор. (Микроволны – это то же, что и световые волны, но их частота всего лишь десять тысяч миллионов волн в секунду). Пензиас и Вильсон заметили, что уровень шума, регистрируемого их детектором, выше, чем должно быть. Этот шум не был направленным, приходящим с какой-то определенной стороны. Сначала названные исследователи обнаружили в детекторе птичий помет и пытались объяснить эффект другими причинами подобного рода, но потом все такие "факторы" были исключены. Они знали, что любой шум, приходящий из атмосферы, всегда сильнее не тогда, когда детектор направлен прямо вверх, а когда он наклонен, потому что лучи света, идущие из-за горизонта, проходят через значительно более толстые слои атмосферы, чем лучи, попадающие в детектор прямо сверху. "Лишний" же шум одинаков, куда бы ни направлять детектор. Следовательно, источник шума должен находиться за пределами атмосферы. Шум был одинаковым и днем, и ночью, и вообще в течение года, несмотря на то что Земля вращается вокруг своей оси и продолжает свое вращение вокруг Солнца. Это означало, что источник излучения находится за пределами Солнечной системы и даже за пределами нашей Галактики, ибо в противном случае интенсивность излучения изменялась бы, поскольку в связи с движением Земли детектор меняет свою ориентацию. Как мы знаем, по пути к нам излучение проходит почти через всю наблюдаемую Вселенную.

Теория Большого взрыва является на данный момент общепринятой космологической моделью, описывающей рождение Вселенной. Она гласит о том, что около 13,7 млрд лет назад Вселенная находилась в сингулярном состоянии, а затем по неведомым причинам что-то пошло не так, и произошёл тот самый взрыв – Вселенная начала расширяться, и это расширение продолжается и по сей день, и, в связи со своим расширением, она постепенно остывает. Сингулярность – экстремальное состояние физического вакуума, порождённого квантовой флуктуацией. В этот момент в точке сингулярности не было ничего – ни времени, ни пространства, а все фундаментальные физические взаимодействия были слиты воедино, да и известные нам законы физики не работали. После Большого взрыва фундаментальные взаимодействия разделились и стали самостоятельными – сначала – гравитация, затем сильное взаимодействие, потом слабое и уже после - электромагнитное. Когда сила тяготения обрела независимость, началось течение времени. Но сейчас не об этом. Теория Большого взрыва многое объясняет и не противоречит экспериментальным данным, хотя и является неидеальной. Всё же с этой гипотезой не все согласны, и многие учёные склоняются к другой версии – модели Циклической Вселенной.

Теорию Циклической Вселенной разработали физики-теоретики из Принстонского университета Пол Стейнхардт и Нил Тьюрок в 2001 году. Строится эта теория, в свою очередь, на М-Теории – самой «продвинутой» версии теории струн. Она утверждает, что физический мир имеет 11 измерений. Напомню, что мы знаем только 4 – три пространственных (длина, ширина, высота) и ещё одно – время. В М-Теории описывается, что в пространстве есть 10 пространственных измерений, и одно временное. Сразу же возникает вопрос: это как?

Начнём с самого начала. Нулевое измерение — это точка, у которой нет размеров. Двигаться некуда, никаких координат для обозначения местонахождения в таком измерении не нужно.

Теперь поставим рядом с первой точкой вторую и проведём через них линию. Получилось первое измерение. У одномерного объекта есть только один размер — длина. Движение в рамках одномерного пространства очень ограничено, ведь возникшее на пути препятствие не обойдёшь. Двигаться можно только «туда-сюда». Чтобы определить местонахождение на этом отрезке, понадобится всего лишь одна координата.

Следующий наш шаг - поставить рядом с только что нарисованным отрезком точку. Чтобы уместить оба эти объекта, нам потребуется уже двумерное пространство, обладающее длиной и шириной – скажем, лист бумаги, то есть, площадью, однако без глубины, то есть, без объёма. Расположение любой точки на этом поле определяется двумя координатами.

Третье измерение возникает, когда мы добавляем к этой системе третью ось координат. Нам, жителям трёхмерной Вселенной, очень легко это представить.

Живём мы в четырёхмерном измерении. По крайней мере, мы к этому привыкли, ведь, договариваясь о встрече с другом, вы укажете и место встречи, и время.

Современные теории гласят, что гравитация искривляет пространство-время. Искривляет, но куда и во что? Точно ни в одно из знакомых нам измерений. До какой степени искривляют пространство-время чёрные дыры? Есть ли предел? А что, если все эти и другие загадки современной науки объясняются тем, что геометрия пространства совсем не такая, какой мы привыкли её воспринимать?

В нашем пространстве в привычном для нас понимании находятся другие пространства – браны. Наша Вселенная – одна из таких бран, в которой есть три пространственных измерения. Её заполняет множество частиц – электроны, кварки, фотоны, которые на самом деле выглядят не как «шарики», а как разомкнутые вибрирующие струны только лишь с одним пространственным измерением – длиной. Концы каждой струны закреплены внутри трёхмерной браны так, что покинуть её струна не может (подобно струнам, натянутым на гриф гитары). Помимо таких «пленных» струн есть и замкнутые струны, похожие на кольца. Они ни к чему не прикрепляются, они свободные и могут путешествовать за пределы бран – к ним относятся гравитоны – кванты поля тяготения, переносчики гравитационного взаимодействия.

Если вы поняли вышеописанное, то теперь можно попробовать разобраться в том, как Циклическая модель Вселенной объясняет её прошлое и будущее. Учёные считают, что во Вселенной существует некая невидимая тёмная энергия, которая заставляет нашу Вселенную расширяться, и ещё эта сила расталкивает друг от друга всю материю, например, галактики «разбегаются», с каждым годом всё дальше и дальше разлетаясь в разные стороны. Размер самой Вселенной из-за влияния тёмной энергии всё время увеличивается. Плотность материи постоянно падает, гравитационное искривление пространства ослабевает, а его геометрия становится всё более плоской. Когда тёмная энергия станет полностью доминантной и «растолкает» всё настолько, что победит гравитацию, материя больше не сможет объединяться, звёзды и галактики перестанут формироваться, и весь мир погрузится во тьму. Но произойдёт это ещё не скоро – не раньше, чем через 30 млрд лет, по подсчётам учёных, поэтому мы пока можем жить и радоваться!

В концепции Циклической модели Вселенной на основе теории бран предполагается, что параллельно нашей трёхмерной бране может существовать другая трёхмерная брана, и между ними действует сила гравитационного притяжения. Энергия гравитационного взаимодействия между бранами порождает явление тёмной энергии в каждой из бран, заставляя их бесконечно расширяться. Гравитационное притяжение заставляет браны притягиваться друг к другу, в результате чего они сталкиваются и отскакивают друг от друга. Однако сила притяжения замедляет скорость их удаления и заставляет их снова приближаться друг к другу и сталкиваться, что приводит к бесконечным повторениям цикла притяжений, столкновений и отскоков. Каждое столкновение приводит к порождению в каждой бране сверхплотной и горячей материи — именно в таком состоянии, в каком она была в момент Большого Взрыва. В ходе дальнейшего расширения браны эта материя остывает и проходит через весь этап известной нам космологической эволюции с образованием галактик, звёзд, планет и, возможно, жизни. И весь этот цикл повторяется снова и снова, и так, возможно, до бесконечности.

Повторение циклов происходит не за счёт смены расширения и сжатия пространства самой браны (Вселенной), а за счёт расширения и сжатия пространства между бранами в дополнительном измерении. Само же пространство браны всегда только расширяется. При этом, хотя полная энтропия внутри каждой браны всё время возрастает, вследствие бесконечного расширения бран её плотность уменьшается и к началу каждого следующего цикла достигает почти нулевого значения, то есть происходит полный возврат к начальному состоянию. Это обеспечивает механизм «сброса» энтропии в каждом цикле. Такая модель не противоречит теории Мультивселенной, в которой разные вселенные разнесены во времени. Здесь же работает и закон сохранения энергии. До нашей Вселенной, до начала того самого состояния, когда всё началось с нуля, или, как мы говорим, от Большого взрыва, тоже существовала Вселенная.

Теория Циклической Вселенной интересна и необычна, и самый главный вопрос: если она действительно верна, то с чего же вообще начались все эти бесконечные циклы.


По поводу Вселенной существуют две особенно мучительных нерешённых загадки, одна из которых связана с её конечной судьбой, а вторая — с началом, десятилетиями интригующие космологов. Учёное сообщество всегда считало, что две этих задачи не зависят друг от друга — но что, если это не так?

Первая задача связана с существованием чего-то под названием «тёмная энергия», которая сегодня ускоряет расширение Вселенной, и в итоге определит её конечную судьбу. Теоретики рассказывают о том, что действие тёмной энергии можно объяснить, введя в уравнения Эйнштейна новый член под названием «космологическая константа». Но чтобы это объяснение сработало, у космологической константы должно быть определённое, очень малое, значение. В естественных единицах измерения она определяется единицей, делённой на число, состоящее из 123 знаков! Объяснение значения этой константы — одна из самых трудных проблем теоретической физики.

Вариации реликтового излучения указывают на колебания плотности ранней Вселенной

Вторая проблема связна с ещё одним важным числом, определяющим нашу Вселенную и с формированием таких структур, как галактики и группы галактик. Мы знаем, что ранняя Вселенная, хотя и была очень однородной, содержала небольшие флуктуации в плотности, ставшие первопричинами видимых нами сегодня космических структур. Чтобы совпадать с нашими наблюдениями, у этих флуктуаций должна была быть определённая величина и форма. То, как эти флуктуации появились в самые ранние периоды эволюции Вселенной, и их форма и размер являются настолько же удивительной загадкой космологии.

При общепринятом подходе к космологии два этих числа — величина космологической константы и величина изначальных возмущений — не считаются связанными. Ведь одно из них имеет дело с самой ранней фазой существования Вселенной, а второе — с самой поздней, и они разделяются космическим временем в 14 млрд. лет. Более того, стандартная космология не объясняет эти значения на основе фундаментальных принципов. Общепринятые модели Вселенной ничего не говорят о численном значении космологической константы, или предсказывают совершенно другие значения. Касательно величины изначальных возмущений самым популярным подходом считается получение этого значения из класса моделей, описывающих инфляцию — период быстрого роста в ранней фазе существования Вселенной. Проблема с инфляционными моделями в том, что их можно подстроить под выдачу практически любого результата, из-за чего у них отсутствует предсказательная возможность.

В моей недавней работе, выполненной совместно с моей дочерью, Хамсой Падманабхан и Томаллой Феллоу в Швейцарской высшей технической школе Цюриха, оба этих числа связываются с космогенезисом — созданием Вселенной — и объясняется их точное значение. Наша работа, недавно опубликованная в Physics Letters B, показывает, что само существование космологической константы, как и её крохотное значение, можно представить как прямое следствие информационного содержимого космического пространства-времени [Padmanabhan, T. & Padmanabhan, H. Cosmic information, the cosmological constant and the amplitude of primordial perturbations. Physics Letters B 773, 81-85 (2017)]. Кроме того, анализ выдаёт правильное значение размера и формы малых флуктуаций ранней Вселенной.

Замечательная взаимосвязь этих фундаментальных констант имеет важное значение для нашего понимания Вселенной. В частности, она меняет наше понимание Большого взрыва и устраняет необходимость периода инфляции на ранней стадии Вселенной.

Большой взрыв, вероятно, является самой известной особенностью стандартной космологии. Но он ещё и не очень нужен для неё. Классическая модель Вселенной, описанная уравнениями Эйнштейна, перестаёт работать в условиях Большого взрыва, при бесконечной плотности и температуре — это та ситуация, которую физики называют сингулярностью.

Но что, если бы сингулярности не было? С 1960-х физики работали над описанием Вселенной без Большого взрыва, пытаясь объединить теорию гравитации и квантовую теорию в нечто под названием «квантовая гравитация». Физики Джон Уилер и Брайс Девитт первыми применили эти идеи к гипотетической догеометрической фазе Вселенной, в которой понятия пространства и времени ещё не появились из неизвестной пока структуры. Это привело к появлению квантовой космологии, в которой физики пытаются описать динамику простых, игрушечных моделей Вселенной квантовым языком. Стоит ли говорить, что за десятилетия внезапно появилось несколько различных, хотя и связанных между собою, идей описания догеометрической фазы. Объединяет их то, что классическая Вселенная без всякой сингулярности появляется через серию преобразований из догеометрической фазы в такую, в которой пространство-время описываются уравнениями Эйнштейна. Основная сложность построения такого описания состоит в том, что у нас нет полной теории квантовой гравитации, которая позволила бы нам детально моделировать догеометрическую фазу.



Эйнштейн несколько раз называл своё пристрастие к космологической константе в своих уравнениях грубой ошибкой. Сегодня физики считают, что она имеет положительное значение.

Введённый нами ключевой ингредиент, помогающий обойти эту техническую сложность — концепция космической информации. В последнее время идея того, что информация должна играть ключевую роль в описании физики, набирает всё больше поддержки. Она появляется в нескольких случаях, когда учёные пытаются скомбинировать принципы квантовой теории и гравитации — допустим, при изучении квантовых чёрных дыр. Также в некоторых из этих моделей существует интригующая идея голографии, утверждающая, что информационное наполнение объёмного региона может быть связано с информационным наполнением его границ. Но, к несчастью, математическое описание информации в разных случаях получается разным, и объединяющий принцип, применимый во всех случаях, пока не найден. Поэтому для применения идеи информации ко всей Вселенной нам сначала нужно было придумать для неё физически подходящее определение.

Используемое нами определение космической информации можно описать при помощи аналогии. Когда кусочек льда плавится и превращается в воду, происходит фазовый переход из твёрдого состояния в жидкое. Реальные процессы фазового перехода могут быть крайне сложными, но общее количество атомов льда будет таким же, как количество атомов воды. Это количество определяет количество степеней свободы системы, не меняющееся во время фазового перехода. Точно так же фазовый переход, приведший к появлению Вселенной, можно описать числом, связывающим количество степеней свободы в догеометрической фазе с количеством, присущим классическому пространству-времени. Используя это число, которое мы назвали космин [CosmIn], мы можем объединить две фазы Вселенной, и обойти сложности полной модели квантовой гравитации.

Космин, как физически наблюдаемое число, должен быть конечным. В отсутствии сингулярностей мы считаем, что все физические величины должны быть конечными. Кроме того, мы смогли показать, что космин будет конечным, только если Вселенная испытает ускоренную фазу расширения в поздний период существования — такую, какую мы сегодня наблюдаем. Эта связь не только говорит о наличии фундаментальной причины существования космологической константы, но и о способах подсчёта её числового значения — если нам будет известно значение космина.

Значение космина в догеометрической или квантово-гравитационной фазе Вселенной можно определить, используя результаты, периодически появляющиеся в разных моделях квантовой гравитации. Оказывается, что общее количество информации, переданной из квантово-гравитационной фазы в классическую фазу должно равняться несложному числу: 4π, площади сферы единичного радиуса. Используя этот факт, мы можем связать численное значение космологической константы со шкалой энергий, на которой Вселенная перешла из квантово-гравитационной фазы в классическую.

Эту энергетическую шкалу перехода можно связать со вторым загадочным свойством нашей Вселенной: величиной крохотных квантовых флуктуаций в ранней Вселенной, выросших и сформировавших галактики и галактические скопления, видимые нами сегодня. Популярная система подсчёта размера этих флуктуаций использует инфляционные модели Вселенной, описывающие Вселенную, проходящую через невероятное большое и быстрое расширение в размерах. Но инфляционных моделей бывает очень много и они очень разные, и они могут выдать любое нужное значение. Также стоит отметить, что форма изначальных флуктуаций была получена Эдвардом Робертом Харрисоном в 1970-м (и независимо от него Яковом Зельдовичем), и называется спектром Харрисона-Зельдовича. Но люди забывают указать на то, что Харрисон получил свой результат более чем на десять лет раньше до изобретения инфляционных моделей!

Наша модель позволяет связать обе величины — величину космологической константы и размер изначальных флуктуаций — с масштабом энергии, на котором догеометрическая Вселенная испытала фазовый переход и стала классической Вселенной, в которой мы живём. И, внимание, когда мы подбираем правильную энергетическую шкалу, мы получаем правильное, наблюдаемое значение для обеих этих значений. Это ведёт нас к алгебраической взаимосвязи между космологической константой, величиной изначальных флуктуаций и космином. Мы можем перевернуть это отношение, используя наблюдаемые космологические параметры, и проверить, действительно ли значение космина равно 4π. Теория прекрасно проходит проверку; мы обнаруживаем, что космин, определяемый из наблюдений, равен 4π с точностью до 1/1000.

Удивительно, что сложная комбинация космологических параметров, считавшихся не связанными друг с другом, имеет такое простое значение. Общепринятым подходом будет рассмотреть такую связь как случайное совпадение. Мы же считаем, что она рассказывает нам нечто глубокое и прекрасное о нашей Вселенной.

Мы считаем, что мы сделали первую попытку связать численное значение космологической константы с размером флуктуаций в ранней Вселенной, и получить оба этих значения из модели, не обладающей подстраиваемыми параметрами, и связывающей их со шкалой энергии, на которой Вселенная начала существовать.

Все эти идеи существуют на более общей платформе квантовой гравитации, теории, которой у физиков, несмотря на почти пять десятилетий разработки, всё ещё нет. Одно из преимуществ нашей модели — ей не требуются подробности квантовой гравитации. Но она делает две важных подсказки по поводу природы квантовой гравитации и структуры пространства-времени. Во-первых, она говорит о том, что пространство-время нужно представлять состоящим из микроскопических степеней свободы, так, как материю, состоящую из атомов. Во-вторых, она утверждает, что в правильную теорию происхождения Вселенной должен входить фазовый переход от догеометрической фазы к классической фазе.

Эти подсказки могут ответить на ключевой вопрос: почему, после нескольких десятилетий работы, теоретики так и не объединили гравитацию и квантовую теорию? Мы считаем, что это лучше всего объяснить ещё одной аналогией. Мы знаем, что динамика жидкостей — непротиворечивая физическая теория, выражаемая через набор уравнений. Если взять их как фундаментальные и применить к ним принципы квантовой теории, мы можем открыть новое интересное явление — к примеру, фононы (кванты вибрации) и их взаимодействия. Однако при помощи такого подхода мы никак не сможем добраться до квантовой структуры материи.

Существуют свидетельства того, что описывающие гравитацию уравнения в этом смысле похожи на динамику жидкостей. Иначе говоря, переформулировка уравнений, описывающих гравитацию, с использованием принципов квантовой теории похоже на применение квантовых принципов к уравнениям динамики жидкостей. Мы не откроем квантовой структуры пространства-времени таким образом — и мы считаем, что из-за этого десятилетия попыток квантификации теории Эйнштейна закончились громким провалом.

Вместо этого нам необходимо переосмыслить природу гравитации и понять, что она говорит нам о микроскопической структуре пространства-времени. Такой подход физик Людвиг Больцман использовал, чтобы понять, что температурные явления требуют представления о материи, как о состоящей из дискретных степеней свободы (иначе говоря, атомов). Больцман, по сути, сказал, что если что-то может быть горячим, оно должно содержать микроскопические степени свободы.

Пространство-время тоже может обладать температурой и казаться горячим определённым наблюдателям. Эта идея появилась благодаря работам Якоба Бекенштейна и Стивена Хокинга в контексте чёрных дыр. Вскоре после этого в середине 70-х работы Билла Унриха и Пола Дэйвиса показали, что это — основное свойство пространства-времени. Скомбинировав парадигму Больцмана с тем фактом, что пространство-время — как и обычная материя — может быть горячим, вы придёте к выводу, что у пространства-времени должны быть внутренние степени свободы, как атомы в материи. Теоретические свидетельства в поддержку этого вывода начали появляться в последние годы [Padmanabhan, T. The atoms of spacetime and the cosmological constant. Journal of Physics: Conference Series 880, 012008 (2017)]. В этом наблюдении содержится ключ к пониманию микроструктуры пространства-времени, что быстро приводит к замечательным результатам.

Во-первых, эволюцию участка пространства-времени можно описать в терминах степеней свободы (или, что то же самое, информационного содержимого), находящегося в границах этого участка. Во-вторых, гравитация становится нечувствительной к изменениям на нулевом уровне энергии. В теории Эйнштейна гравитация отвечает за абсолютное количество энергии, из-за чего космологическую константу практически невозможно подсчитать. Но для парадигмы на основе информационного содержимого это не так. В-третьих, информационный подход говорит о том, что мы не должны представлять себе космическую эволюцию согласно определённому решению уравнений Эйнштейна. Эти уравнения возникают из более точного набора уравнений, описывающих квантовые степени свободы пространства-времени [Padmanabhan, T. Do We Really Understand the Cosmos? Comptes Rendus Physique 18, 275-291 (2017)].

Информационный подход, подтверждённый нашей моделью космина, даёт нам новую, яркую картину Вселенной, аналогичной большому куску льда, содержащему источник тепла. Источник тепла плавит лёд вокруг него, создавая участок из воды, который расширяется, достигая локального термодинамического равновесия. На крупных масштабах, ближе к границе фаз, молекулы ещё не достигли равновесия, поскольку кусок льда нагревается изнутри. Интересно, что это очень похоже на поведение нашей Вселенной. Участок с водой похож на наблюдаемую Вселенную (описываемую теорией Эйнштейна). Он окружён догеометрической фазой (похожей на лёд), описываемой неизвестными пока законами квантовой гравитации. Идея Большого взрыва исчезает, и вместо неё появляется переход из одной фазы к другой по их границе. Также исчезает необходимость в инфляционном периоде.

Вся платформа проста и элегантна, поскольку описывается единственным параметром: шкалой энергий фазового перехода ранней Вселенной от догеометрии к Эйнштейновской геометрии. Это отличается от обычных инфляционных моделей, содержащих множество параметров и не имеющих предсказательных возможностей. Наша модель не использует непроверенную физику. Единственный сделанный нами постулат — информационное наполнение Вселенной должно равняться 4π, площади поверхности единичной сферы.

Работа открывает три новых направления исследований. Первое, она приглашает нас изучить физику догеометрической фазы в различных моделях квантовой гравитации. Второе, она открывает возможность изучить идею космической информации, использованной в этой работе и попытаться связать её с другими похожими идеями, используемыми в других контекстах. Третье, она усиливает идею того, что пространство-время состоит из более элементарных степеней свободы — так, как материя состоит из атомов — и призывает нас изучать различные фазы пространства-времени так, как мы изучаем различные фазы материи в физике конденсированного состояния.

Тану Падманабхан — профессор в Межуниверситетском центре астрономии и астрофизики Индии.


Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.

Современные представления теории Большого взрыва и теории горячей Вселенной

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,77 ± 0,059 млрд лет назад из некоторого начального сингулярного состояния и с тех пор непрерывно расширяется и охлаждается. Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 10 32 К (Планковская температура) и плотностью около 10 93 г/см³ (Планковская плотность). Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.

Приблизительно через 10 −35 секунд после наступления Планковской эпохи (Планковское время — 10 −43 секунд после Большого взрыва, в это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии некоторого времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.

Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода (до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии).

После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Проблема начальной сингулярности

240px-Universe_expansion_rus[1]

Согласно теории Большого взрыва, Вселенная в момент образования была в чрезвычайно плотном и горячем состоянии, называемом космологической сингулярностью

Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит, при использовании общей теории относительности и некоторых других альтернативных теорий гравитации, к бесконечной плотности и температуре в конечный момент времени в прошлом. Размеры Вселенной тогда равнялись нулю — она была сжата в точку. Это состояние называется космологической сингулярностью (часто космологическую сингулярность образно называют «рождением» Вселенной).

Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана, в числе прочих теорем о сингулярностях, Р. Пенроузом и С. Хокингом в конце 1960-х годов.

Теория Большого взрыва не даёт никакой возможности говорить о чём-либо, что предшествовало этому моменту (потому что наша математическая модель пространства-времени в момент Большого взрыва теряет применимость, при этом теория вовсе не отрицает возможность существования чего-либо до Большого взрыва). Это сигнализирует о недостаточности описания Вселенной классической общей теорией относительности.

Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Проблема существования сингулярности в данной теории является одним из стимулов построения квантовой и других альтернативных теорий гравитации, которые стараются разрешить эту проблему.

Существует несколько гипотез о возникновении видимой Вселенной (некоторые собраны в видео BBC: Горизонт. Что было до большого взрыва?):

  • Теория А. Линде о том, что Вселенная бесконечна и заполнена очень плотной энергией, а наша видимая часть возникла расширением (инфляцией) небольшой части в «пузырёк» (как возникают пузырьки в плотном сыре)
  • Теория Ли Смолина о том, что Вселенные возникают от взрыва «сингулярности» внутри чёрных дыр
  • Теория Нейла Турока о рождении Вселенных в результате столкновения «бран» (многомерных мембран в теории струн)

Дальнейшая эволюция Вселенной

Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.

История развития представлений о Большом Взрыве

  • 1916 — вышла в свет работа физика Альберта Эйнштейна «Основы общей теории относительности», в которой он завершил создание релятивистской теории гравитации.
  • 1917 — Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной (модель Вселенной Эйнштейна, знаменующая зарождение космологии), ввёл космологическую постоянную Λ. (Впоследствии Эйнштейн назвал введение космологической постоянной одной из самых больших своих ошибок; уже в наше время выяснилось, что Λ-член играет важнейшую роль в эволюции Вселенной). В. де Ситтер выдвинул космологическую модель Вселенной (модель де Ситтера) в работе «Об эйнштейновской теории гравитации и её астрономических следствиях».
  • 1922 — советский математик и геофизик А. А. Фридман нашёл нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной (нестационарная космологическая модель, известная как решение Фридмана). Если экстраполировать эту ситуацию в прошлое, то придётся заключить, что в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлёт. Поскольку во Вселенной очень часто происходят процессы взрывного характера, то у Фридмана возникло предположение, что и в самом начале её развития также лежит взрывной процесс — Большой взрыв.
  • 1923 — немецкий математик Г. Вейль отметил, что если в модель де Ситтера, которая соответствовала пустой Вселенной, поместить вещество, она должна расширяться. О нестатичности Вселенной де Ситтера говорилось и в книге А. Эддингтона, опубликованной в том же году.
  • 1924 — К. Вирц обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью де Ситтера, согласно которой скорость удаления отдалённых объектов должна возрастать с их расстоянием.
  • 1925 — К. Э. Лундмарк и затем Штремберг, повторившие работу Вирца, не получили убедительных результатов, а Штремберг даже заявил, что «не существует зависимости лучевых скоростей от расстояния от Солнца». Однако было лишь ясно, что ни диаметр, ни блеск галактик не могут считаться надёжными критериями их расстояния. О расширении непустой Вселенной говорилось и в первой космологической работе бельгийского теоретика Жоржа Леметра, опубликованной в этом же году.
  • 1927 — опубликована статья Леметра «Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей». Коэффициент пропорциональности между скоростью и расстоянием, полученный Леметром, был близок к найденному Э. Хабблом в 1929. Леметр был первым, кто чётко заявил, что объекты, населяющие расширяющуюся Вселенную, распределение и скорости движения которых и должны быть предметом космологии — это не звёзды, а гигантские звёздные системы, галактики. Леметр опирался на результаты Хаббла, с которыми он познакомился, будучи в США в 1926 г. на его докладе.
  • 1929 — 17 января в Труды Национальной академии наук США поступили статьи Хьюмасона о лучевой скорости NGC 7619 и Хаббла, называвшаяся «Связь между расстоянием и лучевой скоростью внегалактических туманностей». Сопоставление этих расстояний с лучевыми скоростями показало чёткую линейную зависимость скорости от расстояния, по праву называющуюся теперь законом Хаббла.
  • 1948 — выходит работа Г. А. Гамова о «горячей вселенной», построенная на теории расширяющейся вселенной Фридмана. По Фридману, вначале был взрыв. Он произошёл одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной — Солнце, звёзды, галактики и планеты, в том числе Земля и всё что на ней. Гамов добавил к этому, что первичное вещество мира было не только очень плотным, но и очень горячим. Идея Гамова состояла в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом ядерном котле за несколько минут были синтезированы лёгкие химические элементы. Самым эффектным результатом этой теории стало предсказание космического фона излучения. Электромагнитное излучение должно было, по законам термодинамики, существовать вместе с горячим веществом в «горячую» эпоху ранней Вселенной. Оно не исчезает при общем расширении мира и сохраняется — только сильно охлаждённым — и до сих пор. Гамов и его сотрудники смогли ориентировочно оценить, какова должна быть сегодняшняя температура этого остаточного излучения. У них получалось, что это очень низкая температура, близкая к абсолютному нулю. С учётом возможных неопределённостей, неизбежных при весьма ненадёжных астрономических данных об общих параметрах Вселенной как целого и скудных сведениях о ядерных константах, предсказанная температура должна лежать в пределах от 1 до 10 К. В 1950 году в одной научно-популярной статье (Physics Today, № 8, стр. 76) Гамов объявил, что скорее всего температура космического излучения составляет примерно 3 К.
  • 1955 — Советский радиоастроном Тигран Шмаонов экспериментально обнаружил шумовое СВЧ-излучение с температурой около 3K.
  • 1964 — американские радиоастрономы А. Пензиас и Р. Вилсон открыли космический фон излучения и измерили его температуру. Она оказалась равной именно 3 К. Это было самое крупное открытие в космологии со времён открытия Хабблом в 1929 году общего расширения Вселенной. Теория Гамова была полностью подтверждена. В настоящее время это излучение носит название реликтового; термин ввёл советский астрофизик И. С. Шкловский.
  • 2003 — спутник WMAP с высокой степенью точности измеряет анизотропию реликтового излучения. Вместе с данными предшествующих измерений (COBE,Космический телескоп Хаббла и др.), полученная информация подтвердила космологическую модель ΛCDM и инфляционную теорию. С высокой точностью был установлен возраст Вселенной и распределение по массам различных видов материи (барионная материя — 4 %, тёмная материя — 23 %, тёмная энергия — 73 %).
  • 2009 — запущен спутник Планк, который в настоящее время измеряет анизотропию реликтового излучения с ещё более высокой точностью.

История термина

Первоначально теория Большого взрыва называлась «динамической эволюционирующей моделью». Впервые термин «Большой взрыв» (Big Bang) применил Фред Хойл в своей лекции в 1949 (сам Хойл придерживался гипотезы «непрерывного рождения» материи при расширении Вселенной). Он сказал:

«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной».

На русский язык Big Bang можно было бы перевести как «Большой хлопок», что, вероятно, точнее соответствует уничижительному смыслу, который хотел вложить в него Хойл. После того, как его лекции были опубликованы, термин стал широко употребляться.

Критика теории

Кроме теории расширяющейся Вселенной имелась также теория, что Вселенная стационарна, то есть не эволюционирует и не имеет ни начала, ни конца во времени. Часть сторонников такой точки зрения отвергают расширение Вселенной, а красное смещение объясняют гипотезой о «старении» света. Однако, как выяснилось, эта гипотеза противоречит наблюдениям, например, наблюдаемой зависимости продолжительности вспышек сверхновых от расстояния до них. Другой вариант, не отрицающий расширения Вселенной, представлен теорией стационарной Вселенной Ф. Хойла. Она также плохо согласуется с наблюдениями.

В некоторых теориях инфляции (например, вечной инфляции) наша наблюдаемая картина Большого взрыва соответствует положению лишь в наблюдаемой нами части Вселенной (Метагалактике), но не исчерпывает всю Вселенную.

Кроме того, в теории Большого взрыва не рассматривается вопрос о причинах возникновения сингулярности, или материи и энергии для её возникновения, обычно просто постулируется её безначальность. Считается, что ответ на вопрос о существовании и происхождении начальной сингулярности даст теория квантовой гравитации.

Есть также некоторое число наблюдательных фактов, плохо согласующихся с изотропностью и однородностью наблюдаемой Вселенной: наличие преимущественного направления вращения галактик, неоднородности в распределении галактик на наибольших доступных масштабах, ось зла.

В официальной науке СССР теория Большого взрыва сначала была воспринята с настороженностью. Так, в 1955 г. один советский автор писал: «Марксистско-ленинская доктрина о бесконечной Вселенной является фундаментальной аксиомой в основании советской космологии… Отрицание или избегание этого тезиса… неизбежно ведет к идеализму и фидеизму, то есть, в конечном итоге, к отрицанию космологии и, таким образом, не имеет ничего общего с наукой». Хотя теория Большого взрыва и была, в конце концов, воспринята советскими учеными и философами, тем не менее до самого распада СССР в философских словарях был закреплен постулат о бесконечности и вечности материи. При этом декларировалось, что теория Большого взрыва справедлива лишь для Метагалактики, а Метагалактика — это ещё не вся Вселенная, «Большой Взрыв» не начало Вселенной, а всего лишь очередной переход несотворимой и неуничтожаемой материи из одного состояния в другое. В 3-м издании Большой советской энциклопедии сказано: «Факт взаимного удаления галактик, составляющих Метагалактику, свидетельствует о том, что некоторое время тому назад она находилась в качественно ином состоянии и была более плотной… Возраст Метагалактики иногда принимают за возраст Вселенной, что характерно для сторонников отождествления Метагалактики со Вселенной в целом. Действительно, гипотеза о существовании во Вселенной многих метагалактик, расположенных просто на некоторых расстояниях друг от друга, не находит никаких подтверждений. Однако следует принимать во внимание возможность более сложных соотношений между Метагалактикой и Вселенной в целом и даже между отдельными метагалактиками: в столь больших объёмах пространства принципы евклидовой геометрии оказываются уже неприменимыми. Эти соотношения могут быть сложны и в топологическом отношении. Нельзя исключать и возможность того, что каждая заряженная элементарная частица может быть эквивалентна целой системе галактик, то есть состоять из такой системы. Возможности таких, более сложных соотношений, должны также учитываться космологией. Поэтому ещё преждевременно говорить, что имеются какие-либо данные о возрасте Вселенной в целом».

Теория и религия

22 ноября 1951 года Папа Римский Пий XII объявил, что теория Большого взрыва не противоречит католическим представлениям о создании мира. В православии также существует положительное отношение к этой теории. Консервативные протестантские христианские конфессии также приветствовали теорию Большого Взрыва, как поддерживающую историческую интерпретацию учения о творении. Некоторые мусульмане стали указывать на то, что в Коране есть упоминания Большого взрыва. Согласно индуистскому учению, у мира нет начала и конца, он развивается циклично, однако в «Энциклопедии индуизма» говорится, что теория напоминает, что всё произошло от Брахмана, который «меньше атома, но больше самого громадного».

В Писаниях бахаи утверждается, что Вселенная не имеет начала, однако все элементы произошли из некоторой единой субстанции — то есть, был предсказан какой-то аналог теории Стивена Хокинга о «конечной, но бескрайней» Вселенной: «Знайте, что одна из самых сложных для постижения духовных истин есть та, что существующий мир — сия бесконечная Вселенная — не имеет начала… Очевидно, что вначале материя была едина, и что единая материя проявлялась по-разному в каждом элементе. Так было создано многообразие форм, и различные виды проявления материи, единожды возникнув, остались в качестве постоянных, так что каждый элемент обрёл свою индивидуальность. Но это постоянство было не окончательным, и полностью и в совершенстве осуществилось лишь по прошествии очень долгого периода времени».

Читайте также: