Движение какой планеты по диску солнца дает оптический эффект в виде орла

Обновлено: 07.07.2024

Тесты по астрономии 11 класс. Тема: "Солнце"

Правильный вариант ответа отмечен знаком +

1. Наша звезда Солнце является:

а.) Красным гигантом

+ с.) Желтым карликом

2. Каким термином характеризуется расстояние от Земли до Солнца?

+ в.) Астрономическая единица

3. Масса Солнца…

а.) Равна массе всех планет Солнечной системы

+ в.) Больше массы всех планет Солнечной системы

с.) Меньше всех планет Солнечной системы

4. Какие земные явления зависят от Солнечной активности?

а.) Землетрясения, бури, многочисленные катастрофы техногенного характера

в.) Землетрясения, ураганы, торнадо

+ с.) Магнитные бури, полярное сияние и повышение уровня ионизации в верхних слоях атмосферы

5. За счет чего Солнце излучает энергию?

6. Назовите имя ученого, доказавшего движение планет вокруг Солнца:

+ а.) Николай Коперник

в.) Джордано Бруно

с.) Галилео Галилей

7. Какова примерная температура ядра Солнца?

8. Ближайшую к Солнцу точку орбиты называют:

9. Какой вид излучения не относится к Солнцу?

а.) Солнечная радиация

тест 10. Какую долю (примерно) в элементном составе Солнца занимает водород?

11. Химический состав Солнца это:

+ а.) Водород, гелий, кислород, прочие элементы

в.) Водород, кислород, прочие элементы

с.) Водород, гелий

12. В каком направлении Солнце обращается вокруг своей оси?

а.) Вращение отсутствует

в.) Вращение осуществляется только отдельными слоями

+ с.) По направлению, в котором планеты движутся вокруг Солнца

13. Каким термином обозначается видимая для наблюдателя поверхность Солнца?

14. Выберите правильное определение «солнечного ветра»:

а.) Выброс вещества, находящегося в Солнечной короне

в.) Последняя из внешних оболочек Солнца

+ с.) Поток, состоящий из ионизированных частиц и распространяющийся до границ гелиосферы

15. Последний этап жизни Солнца называется:

а.) Нейтронная звезда

в.) Красный гигант

16. Назовите примерный возраст Солнца:

17. В какой области галактики Млечный Путь находится Солнце?

+ с.) Окраина рукава Ориона

18. Назовите научную миссию, занимающуюся изучением Солнца:

19. Как ученые называют фотосферные пятна, похожие на рисовые зерна:

в.) Солнечные пятна

тест-20. Какой из перечисленных терминов определяет холодные области, расположенные на яркой фотосфере?

21. Существует ли у Солнца магнитное поле?

с.) Нет достоверных данных

22. Источник энергии Солнца это:

а.) Реакции химического характера

+ в.) Термоядерные реакции синтеза (легких ядер)

23. Как называются массы звездного газа, поднимающиеся на сотни тысяч километров над поверхностью Солнца?

24. Цикл солнечной активности составляет:

25. Если на поверхности Солнца увеличивается количество пятен, то блеск звезды:

а.) Будет колебаться

+ с.) Почти не изменится

26. Определите, за сколько времени сжалось бы Солнце, если бы на нем вдруг исчезла сила газового давления:

27. Сколько планет обращается вокруг Солнца?

28. Вокруг чего движется Солнце?

а.) Только собственной оси

+ в.) Вокруг центра Галактики Млечный Путь

с.) Вокруг планеты Земля

29. Линейная скорость Солнца на экваторе составляет:

тест_30. Дайте верное определение понятию «солнечное пятно»:

а.) Вулканы на поверхности Солнца

+ в.) Области, имеющие пониженную температуру

с.) Кратеры от ударов малых небесных тел

31. При помощи, какой методики можно определить температуру на поверхности Солнца?

в.) Законов Кеплера

+ с.) Солнечного спектра

32. Назовите величину мощности излучения, приходящуюся на 1 кг Солнечного вещества?

33. За сколько суток происходит оборот Солнца вокруг собственной оси вблизи экватора?

34. Укажите среднюю плотность Солнца:

35. Когда для наблюдателя наступает солнечное затмение?

+ а.) Если Луна располагается между Солнцем и Землей

в.) Луна попадает в тень, отбрасываемую Землей

с.) Нет правильного ответа

36. Назовите звезду, являющуюся наиболее близкой к Солнцу:

в.) Альфа Центавра

+ с.) Проксима Центавра

37. Звезда, наиболее близкая к планете Земля, называется:

в.) Венера («Утренняя звезда»)

с.) Полярная звезда

38. Согласно современным данным, Солнце и другие звезды сформировались из:

+ а.) Газопылевого облака

в.) Большого взрыва

с.) Остатков других звезд и планет

39. В звезду какого типа превратится Солнце в процессе старения?

+ в.) Красный гигант

с.) Красный карлик

тест*40. В ходе каких процессов на Солнце происходят космические лучи и корпускулярные потоки?

а.) при солнечном ветре

+ в.) при хроматосферных вспышках

с.) при конвекционном движении

41. Основные элементы структуры хромосферы Солнца:

+ а.) Водород, кальций, гелий

с.) Водород, гелий

42. Укажите элементы, составляющие атмосферу Солнца:

+ а.) Корона, фотосфера

с.) Солнечный ветер

43. Благодаря наличию чего в клетках растений возможен процесс фотосинтеза?

44. Дайте определение линии на диске спутника или планеты, которая отделяет освещенное (т.н. «дневное») полушарие от темного («ночного»):

45. Дайте определение понятию эклиптика:

+ а.) Большой круг небесной сферы, по которому происходит видимое с Земли годичное движение Солнца относительно других звезд

в.) Движение Солнца вокруг собственной оси

с.) Расположение Солнца относительно планеты Земля

46. Выберите точное определение термина «хромосфера»:

а.) Внутренняя часть атмосферы Солнца, размер которой составляет порядка нескольких тысяч километров и доступен для наблюдения с Земли в ходе солнечного затмения, излучающая красный свет за счет наличии водорода

+ в.) Внешняя область Солнца, которую мы можем наблюдать как разреженный газовый слой, разогретый до температуры примерно 6000 К, из которого осуществляется излучение энергии в космос

с.) Внешняя атмосфера Солнца, располагающаяся над хромосферой, в состав которой входит горячий газ, простирающийся на миллионы километров относительно Солнца, который можно наблюдать в ходе полного солнечного затмения

47. На какой из нижеприведенных фотографий изображена солнечная корона?

вопрос теста Солнечная корона

48. Выберите из представленных изображений соответствующее протуберанцу:

вопрос теста Протуберанц

49. Что, по мнению ученых, является причиной сильных выбросов материи на Солнце?

а.) Наличие сильных магнитных полей, расположенных около солнечных пятен +

в.) Короткопериодические, большие по объему взрывные выбросы вещества и света

с.) Большая масса яркого газа, который поднимается на сотни тысяч километров над т.н. лимбом (видимым краем диска Солнца)

Тесты по астрономии 11 класс. Тема: "Законы движения планет"

Правильный вариант ответа отмечен знаком +

1. Кто из учёных открыл законы движения планет?

2. Кому из учёных принадлежит следующее высказывание: "В мире правит число".

3. Наблюдение за движением какой планеты позволило учёному построить планетарные орбиты?

4. Планетарные орбиты представляют собой форму:

5. Какая величина стала стандартом для вычисления расстояний в Солнечной системе?

А) + Астрономическая единица

В) – Световой год

Г) – Величина малой полуоси Земной орбиты

6. Одна астрономическая равна расстоянию:

А) – От Земли до Марса

Б) – От Земли до Солнца

В) + От Земли до Луны

Г) – От Солнца до центра Галактики

7. Какой из перечисленных учёных провёл определение координат Марса?

8. Определите, какому закону принадлежит эта формулировка?

«Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.»

А) + Первый закон Кеплера

Б) – Второй закон Кеплера

В) – Третий закон Кеплера

Г) – Четвёртый закон Кеплера

9. Определите, к какому из законов Кеплера относится данная схема?

вопрос теста Третий закон Кеплера

А) – Первый закон Кеплера

Б) – Второй закон Кеплера

В) + Третий закон Кеплера

Г) – Четвёртый закон Кеплера

тест 10. В каком году были опубликованы первые два закона Кеплера?

11. Что такое Перигелий?

А) + Ближайшая к Солнцу точка на орбите планеты

Б) – Наиболее удалённая от Солнца точка на орбите планеты

В) – Точка на орбите планеты, когда она находится ближе всего к соседней планете

Г) – Область на орбите планеты, когда она удаляется от Солнца

12. Что такое Афелий?

А) – Ближайшая к Солнцу точка на орбите планеты

Б) + Наиболее удалённая от Солнца точка на орбите планеты

В) – Точка на орбите планеты, когда та достигает наименьшей скорости обращения вокруг Солнца

Г) – Точка на орбите планеты, когда та достигает наибольшей скорости обращения вокруг Солнца

13. Среди всех планет Солнечной системы лишь две движутся в отличном от других планет направлении. Какие это планеты?

А) – Уран и Нептун

Б) + Уран и Венера

В) – Нептун и Венера

Г) – Сатурн и Юпитер

14. Полный период звёздного обращения Марса составляет:

15. Какому небесному телу Солнечной системы принадлежит эта орбита?

вопрос теста Орбита Плутона

16. Как изменяется скорость движения планеты по мере приближения к Солнцу?

В) – Не изменяется

Г) – Увеличивается, если рядом есть другие планеты

17. Как изменяется скорость движения планеты по мере удаления от Солнца?

В) – Не изменяется

Г) – Увеличивается, если рядом нет других планет

18. Эксцентриситет Земли равен:

19. Какова формула закона всемирного тяготения?

Б) – F = G r2/ m1m2

Г) – F = G2 r2/ m1m2

тест-20. В какой зависимости находятся масса планеты и период обращения вокруг неё спутников?

А) – Период обращения спутников и масса планеты никак не связаны.

Б) – Период обращения спутников больше тогда, когда масса планеты меньше.

В) – Период обращения спутников меньше тогда, когда масса планеты меньше.

Г) + Период обращения спутников меньше тогда, когда масса планеты больше.

21. Как далеко от Солнца будет находиться планета, чей орбитальный период равен 10 годам?

А) + 2 астрономические единицы.

Б) – 4 астрономические единицы.

В) – 8 астрономических единиц.

Г) – 16 астрономических единиц.

22. При каких условиях законы Кеплера будут соблюдаться с абсолютной точностью?

А) – Если в Солнечной системе много планет влияющих друг на друга.

Б) – Если в Солнечной системе лишь две планеты.

В) + Если существуют только два взаимно притягивающихся тела.

Г) – Если все планеты движутся вокруг Солнца синхронно.

23. Как называется ближайшая к Земле точка на орбите Луны?

24. Кто из учёных вносил корректировки в законы Кеплера?

25. В чём заключалось дополнение к третьему закону Кеплера, которое ввёл этот учёный?

А) – Во введении множителя, учитывающего массу звезды.

Б) – Во введении множителя, учитывающего массу планет.

В) + Во введении множителя, учитывающего суммарную массу планет и звезды.

Г) – Во введении множителя, учитывающего фоновую массу комет и астероидов.



Рис. 1: Земля (синяя), Венера (серая) и Солнце (оранженвое), не в масштабе.

По поводу прохождения Венеры по диску Солнца 2012 года написано уже много статей. О том, как редко случается это событие, и почему именно: по идее, Венера, движущаяся вокруг Солнца чаще, чем Земля, должна проходить между Землёй и Солнцем во время каждого своего оборота (рис. 1), но из-за того, что орбиты двух планет не выровнены (не находятся в одной плоскости, см. рис. 2), Венера часто проходит выше или ниже Солнца с точки зрения Земли.

Но вместо того, чтобы повторять слова других, я хочу добавить несколько деталей, которые не так легко найти в интернете.


Вы, возможно, читали, что при помощи техники, основанной на рассуждениях астронома Эдмунда Галлея (известного кометой Галлея), сделанных им с 1678 по 1716 года, а также Джеймса Грегори до него, прохождение Венеры 1716 года был использован для определения расстояния от Земли до Солнца (и до Венеры, и всех остальных планет) с погрешностью в 2% — высочайшая из достигнутых на то время. Надеялись, что точность будет в 10 раз выше, но в процесс вмешался неожиданный оптический эффект под названием "эффект чёрной капли" — по поводу точных причин его возникновения до сих пор идут споры. Но вы могли не прочесть, что это измерение — и множество других измерений расстояний в астрономии, вплоть до достаточно близко расположенных звёзд — основано на принципе параллакса, на том же геометрическом факте, который используется нашими глазами и мозгом для восприятия глубины, или нашей способности чувствовать, насколько далеко от нас находятся объекты, просто взглянув на них.


Рис. 2: Земля (синяя), Венера (серая) и Солнце (оранжевое), не в масштабе. Орбита Венеры (чёрный круг в сером прямоугольнике) наклонена относительно орбиты Земли (синий круг в голубом прямоугольнике). Градус наклона сильно преувеличен. Поскольку Земля и Венера вращаются вокруг Солнца с разными скоростями, они могут проходить мимо друг друга в любых точках орбит.

Верх: большую часть при таком проходе Венера находится выше или ниже (зелёная линия) линии, соединяющей Землю и Солнце (красная линия), поэтому прохождения Венеры по диску Солнца не происходит.

Внизу: В редких случаях линия, соединяющая Землю и Солнце, совпадает с линией пересечения плоскостей орбит, и Венера находится вблизи этой же линии, что и ведёт к прохождению.

Без параллакса тоже несложно определить относительное расстояние от Венеры до Солнца — то есть, отношение радиуса орбиты Венеры LV к радиусу орбиты Земли LE. Поэтому в астрономии эпохи Возрождения довольно рано были высчитаны относительные расстояния от планет до Земли и Солнца. Но чтобы определить LV и LE отдельно, необходимо измерить параллакс, и прохождение Венеры может его обеспечить. Прохождение Венеры в 1760-х дало довольно точное измерение величины LE — LV, «абсолютного» расстояния от Земли до Венеры; это позволило узнать LE, LV, и расстояния до всех остальных планет с погрешностью в пару процентов. До этого, в конце XVII в, было сделано измерение расстояния от Земли до Марса, имевшее погрешность около 10%; оно тоже было основано на параллаксе, но это совсем другая история.

Предварительное замечание: Земля и Венера, и даже Солнце очень малы по сравнению с расстояниями между ними, поэтому нарисовать точные изображения практически невозможно. На иллюстрациях всё время приходится рисовать планеты большими, чем они есть на самом деле, по отношению к расстояниям между ними, просто чтобы вы смогли понять концепцию. Имейте это в виду! Все мои иллюстрации сделаны не в масштабе.

Разбегающиеся звезды

Как вообще можно определить, куда движется Солнечная система относительно близких звезд? Если мы можем на протяжении десятков лет фиксировать перемещение звезды по небесной сфере, то направление движения нескольких звезд скажет нам, куда мы движемся относительно них. Назовем точку, в которую мы движемся, апексом. Звезды, которые находятся недалеко от него, а также от противоположной точки (антиапекса), будут двигаться слабо, потому что они летят на нас или от нас. А чем дальше звезда находится от апекса и антиапекса, тем больше будет ее собственное движение. Представьте, что вы едете по дороге. Светофоры на перекрестках впереди и позади не будут сильно смещаться в стороны. А вот фонарные столбы вдоль дороги так и будут мелькать (иметь большое собственное движение) за окном.

На гифке показано перемещение звезды Барнарда, имеющей самое большое собственное движение. Уже в 18 веке у астрономов появились записи положения звезд на промежутке в 40-50 лет, которые позволили определить направление движения более медленных звезд. Тогда английский астроном Уильям Гершель взял звездные каталоги и, не подходя к телескопу, стал вычислять. Уже первые расчеты по каталогу Майера показали, что звезды движутся не хаотично, и апекс можно определить.



Источник: Hoskin, M. Herschel's Determination of the Solar Apex, Journal for the History of Astronomy, Vol. 11, P. 153, 1980

А с данными каталога Лаланда область удалось серьезно уменьшить.



Оттуда же

Дальше пошла нормальная научная работа — уточнение данных, расчеты, споры, но Гершель использовал правильный принцип и ошибся всего на десять градусов. Информацию собирают до сих пор, например, всего тридцать лет назад скорость движения уменьшили с 20 до 13 км/с. Важно: эту скорость нельзя путать со скоростью солнечной системы и других ближайших звезд относительно центра Галактики, которая равна примерно 220 км/с.

Позитив напоследок

Завершая разговор, стоит отметить очень позитивную историю. Создавший в 2012 году исходное видео DJSadhu первоначально продвигал что-то ненаучное. Но, благодаря вирусному распространению клипа, он пообщался с настоящими астрономами (астрофизик Rhys Tailor очень позитивно отзывается о диалоге) и, спустя три года, сделал новый, гораздо более соответствующий реальности ролик без антинаучных построений.

Еще дальше

Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной — произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя. А в целом проекция созвездий на карту Галактики выглядит так:


Т.е. Солнечная система движется относительно центра Галактики в направлении созвездия Лебедя, а относительно местных звезд в направлении созвездия Геркулеса, под углом 63° к галактической плоскости, <-/, если смотреть с внешней стороны Галактики, северный полюс сверху.

Относительные размеры орбит Венеры и Земли



Рис. 3

Чтобы понять основную причину простоты определения LV/LE, предположим, что орбиты Земли и Венеры круговые и выровненные — они лежат в одной плоскости (как показано на рис. 1, изометрически, и на рис. 3 — вид «сверху»). На самом деле, орбиты Земли и Венеры немного вытянутые и не выровнены (рис. 2). Но эллиптичность и несовпадение плоскостей не сильно важны для наших рассуждений, поэтому сперва мы сможем их проигнорировать, а потом вновь вспомнить, чтобы получить более точные ответы.

Здесь мы применим классическую для физики технологию: сделаем приближение, достаточное для текущей задачи, и не будем углубляться больше, чем нужно. Это очень мощный способ размышления о науке и о знании вообще — на любой вопрос достаточно ответить с определённым уровнем точности, поэтому можно использовать простейшую технику из тех, что дадут вам нужный уровень точности. Этот метод прекрасно используется столетиями и применим не только к физике.

Поэтому мы примем приближение, по которому орбиты круговые и выровнены, и получим примерно правильные ответы, с погрешностью в несколько процентов. Этого будет достаточно для того, чтобы продемонстрировать основные концепции, чего я и добиваюсь. Поверьте мне, что можно сделать гораздо более точные вычисления — или же можете самостоятельно стать экспертом в этом вопросе. Но наше приближение не только даст очень неплохой ответ, но и сможет показать, почему так легко вычислить отношение LV к LE, но не сами значения LV и LE.

В течение года, когда Земля и Венера вращаются вокруг Солнца с разными скоростями, относительное положение Земли и Венеры по отношению к Солнцу меняется. Если в определённый день (день, месяц, год) я решу нарисовать картинку с Солнцем в центре и с Землёй слева, как на рис. 2, тогда Венера может оказаться в любом месте своей орбиты. Это значит, что с точки зрения Земли, угол между Венерой и Солнцем в небе будет меняться в зависимости от даты. Это показано на рис. 3, где угол назван γ. Угол легко измерить; найдите Венеру в небе после заката или перед восходом и измерьте угол между Венерой и Солнцем; см. рис. 4.



Рис. 4

Из рис. 3 видно, что у γ есть максимальный размер — угол между оранжевой и фиолетовой линиями. Перемещаясь по орбите, Венера с каждым закатом будет появляться в другом месте; некоторое время она будет несколько ночей подряд подниматься всё выше над горизонтом, а затем постепенно начнёт появляться ниже. Наблюдая за Венерой несколько ночей подряд и измеряя γ, мы можем определить максимальное значение γ, которое я назову γmax.

Из рис. 3 очевидно, что (как показано на рис. 4) γmax меньше 90°, поскольку фиолетовая линия должна лежать между оранжевой и красной, перпендикуляром. Геометрически это следствие того, что Венера всегда находится ближе к Солнцу, чем Земля. Эти углы объясняют, почему Венера всегда видна либо сразу после захода или перед рассветом (за исключением тех дней, когда она расположена за Солнцем). Венера не может быть в зените после наступления темноты, поскольку для этого ей надо было бы находиться слева от красной линии.



Рис. 5

Теперь мы можем определить отношение радиусов двух орбит — LV к LE — используя γmax. Это простейшая геометрия, см. рис. 5. Суть в том, что когда Венера находится на максимальном угле от Солнца, линия между Солнцем и Венерой перпендикулярна линии между Землёй и Венерой, поэтому линии, соединяющие эти три объекта, образуют прямоугольный треугольник. Отсюда получаем при помощи стандартной тригонометрии:

И отсюда же, при помощи других простейших геометрических формул, мы получаем отношения между расстояниями до других планет.

Это не совсем точно, по причинам, указанным в начале; орбиты планет — эллипсы, и не лежат водной плоскости. Иначе говоря, LV и LE не сохраняются в течение года, а γmax применяется немного сложнее, в трёх измерениях, как на рис. 2, а не в двух, как на рис. 1, 3 и 5. Но при помощи точных измерений положения Венеры и Солнца в небе возможно определить точные орбиты Венеры и Земли вокруг Солнца и улучшить расчёты. Смысл тот же; все измерения положения Венеры и Солнца в небе позволяют лишь измерить относительные размеры орбит Венеры и Земли. Но точные величины LV и LE так определить нельзя. Тут нужен другой подход.

Прохождение Венеры, параллакс и расстояние до Солнца

Причина, по которой прохождение Венеры позволяет измерить абсолютные величины орбит Земли и Венеры — этот процесс можно наблюдать с высокой точностью с разных мест земного шара, в результате чего у вас будут две перспективы видимого местонахождения Венеры по отношению к Солнцу, измеренные из разных мест с известным расстоянием между ними. Измерение параллакса позволяет определить абсолютную величину расстояние от Земли до Венеры из угла параллакса и расстояния между двумя точками измерения на Земле — точно так же, как разный вид объекта для левого и правого глаза позволяет нашему мозгу выдавать для нас ощущение глубины — чувство расстояния до объектов.



Рис. 6

Для демонстрации позвольте мне нарисовать то, как это будет выглядеть с крупной планеты. На рис. 6 показана планета, с которой мы будем наблюдать прохождение (это будет Земля) и проходящая перед звездой планета (это будет Венера). Я представлю упрощённую ситуацию (просто чтобы геометрия стала более простой и основную концепцию было проще увидеть), в которой планеты и звезда выровнены, поэтому с точки зрения наблюдателя на экваторе проходящая планета будет проходить по экватору звезды. Сверху на рис. 6 показан вид «сбоку»; обратите внимание на красную линию, идущую от экватора наблюдающей планеты к звезде через экватор планеты, проходящей по диску звезды.

В случае идеального выравнивания, наблюдатель на экваторе внешней планеты увидит, как внутренняя планета проходит по экватору звезды. Это показано в виде красной линии внизу рис. 6. Но наблюдатель с южного полюса внешней планеты увидит, как внутренняя планета проходит звезду по пути (фиолетовая линия) к северу от экватора звезды (в случае северного полюса всё будет наоборот). Если измерить угол α в небе между путями, по которым двигается проходящая планета, и знать радиус R наблюдающей планеты, мы сможем нарисовать прямоугольный треугольник, соединяющий проходящую планету, центр наблюдающей планеты и полюс наблюдающей планеты, с малым углом &alpha. Простая тригонометрия даст нам расстояние D между планетами во время прохождения, где



Рис. 7

То же верно для Земли, Венеры и Солнца, кроме того, что Земля и Венера так малы по сравнению с расстоянием между ними и Солнцем, что угол α окажется равным порядка 1/20°! (Это довольно малая величина, но вполне измеримая, хотя для точного измерения расстояния до Солнца, которое хотели получить астрономы XVIII века, потребовалось бы довольно сложное технически точное измерение величины небольшого угла). Такой маленький угол я не нарисую, поэтому придётся вам поверить мне на слово, что происходящее является доведённой до предела версией того, что я изобразил на рис. 6, с планетами и звездой (Солнцем) гораздо меньшими, чем нарисованы там, по отношению к расстояниям. Даже изображение на рис. 7 делает планеты гораздо больше, чем они есть. Но идея остаётся неизменной: расстояние DEV между Землёй и Венерой во время прохождения можно определить, измерив угол параллакса α (внизу рис. 7; отметьте, что угловой диаметр Солнца равен порядка 1/2°).

Однако осталось ещё много вопросов:

Первое, как пройти от измерения DEV до измерения нужных величин, LE и LV? Это просто — все взаимоотношения нам уже известны, в частности, мы уже знаем LE/LV (примерно, из рис. 4, или, если подойти к вопросу более тщательно, можно подсчитать и точнее) из максимального угла γmax между Венерой и Солнцем с точки зрения Земли. Нам также известно DEV = LE — LV = LE (1 — LV/LE) из рис. 7. Поэтому мы можем получить приближённое значение LE при помощи:


где α — угол параллакса, измеренный во время транзита, а γmax — максимальный угол между Венерой и Солнцем (рис. 5). Более точные измерения требуют более сложной геометрии, однако с той же основной идеей.

Второе, даже если бы орбиты планет были идеально выровнены, два измерения пути Венеры не нужно измерять с экватора и полюса Земли. Их можно измерить с двух любых широт. Геометрия становится немного сложнее, но не сильно, а принцип остаётся (см. рис. 8).



Рис. 8

Третье, даже без идеального выравнивания появится небольшой угол параллакса при измерении величин с двух разных точек Земли, и если хорошо измерить этот угол, это измерение можно превратить (через чуть более сложные уравнения) в измерение D. Это показано на рис. 8, внизу.

Четвёртый вопрос — исторически сложная проблема измерения углового сдвига пути Венеры во время прохождения на угол α ведёт нас к альтернативной попытке измерения времени — либо времени прохождения, либо просто начала и конца прохождения, а не углов. Первый вариант был предложен Галлеем на основе идей Грегори, а второй, в качестве дальнейшего улучшения, предложил Жозеф Никола Делиль. Метод Галлея не требовал синхронизации часов в разных местах Земли; метод Делиля требовал, поэтому основывался на более передовой часовой технологии.

Даже в XVII или XVIII веке гораздо проще выполнить точное измерение интервала, или моментов начала и завершения затмения, чем точно измерить местоположение Венеры относительно диска Солнца, особенно при отсутствии фотографии. На рис. 9 можно видеть, что фиолетовый и красный пути Венеры, пересекающей Солнце, имеют немного отличные длины из-за того, что они не пересекают его в одном месте, а это значит, что длительность прохождения будет отличаться на время, связанное с углом параллакса. К сожалению, всё оказывается сложнее, чем выглядит на первый взгляд — Земля вертится и движется вокруг Солнца, поэтому наблюдатель проходит довольно значительное расстояние во время прохождения Венеры по диску Солнца. Поэтому требуется много усилий (вычисления довольно сложны, хотя с современными компьютерами они гораздо проще) для определения разницы временных интервалов начала и конца прохождения, наблюдаемого двумя разными наблюдателями на Земле, в зависимости от расстояния до Солнца.

Галлей в начале XVIII века понимал все необходимые геометрические принципы (если вычесть устаревшую английскую фразеологию и стиль из его текстов, вы будете удивлены, как современно звучат его сложные утверждения, и вы увидите, что учёные ещё триста лет назад были очень похожи на сегодняшних учёных, обладали таким же интеллектом и им не хватало только научной технологии сегодняшнего дня).



Рис. 9

Всё это говорит о том, что параллакс — различие в видимом положении, приписываемом Венере по отношению к Солнцу с точки зрения наблюдателей, измеряющих его в одно и то же время но с разных мест на Земле — исторически был очень важным методом, с помощью которого был определён размер Солнечной системы. Сегодня нам доступны и более мощные методы, но вам может быть интересным тот факт, что то, что вы видите сегодня в небе, имеет величайшую историческую важность, или же вы просто можете наслаждаться видом Венеры, величаво движущейся вокруг нашей звезды.

Наверняка, многие из вас видели гифку или смотрели видео, показывающее движение Солнечной системы.


Ролик, вышедший в 2012 году, стал вирусным и наделал много шума. Мне он попался вскоре после его появления, когда я знал о космосе гораздо меньше, чем сейчас. И больше всего меня смутила перпендикулярность плоскости орбит планет направлению движения. Не то, чтобы это было невозможно, но Солнечная система может двигаться под любым углом к плоскости Галактики. Вы спросите, зачем вспоминать давно забытые истории? Дело в том, что именно сейчас, при желании и наличии хорошей погоды, каждый может увидеть на небе настоящий угол между плоскостями эклиптики и Галактики.

Проверяем ученых

Астрономия говорит, что угол между плоскостями эклиптики и Галактики составляет 63°.


Но сама по себе цифра скучна, да и сейчас, когда на обочине науки устраивают шабаш адепты плоской Земли, хочется иметь простую и наглядную иллюстрацию. Давайте подумаем, как мы можем увидеть плоскости Галактики и эклиптики на небе, желательно невооруженным взглядом и не отдаляясь далеко от города? Плоскость Галактики — это Млечный путь, но сейчас, с изобилием светового загрязнения, увидеть его не так просто. Есть ли какая-то линия, примерно близкая к плоскости Галактики? Есть — это созвездие Лебедя. Оно хорошо видно даже в городе, а найти его просто, опираясь на яркие звезды: Денеб (альфа Лебедя), Вегу (альфа Лиры) и Альтаир (альфа Орла). «Туловище» Лебедя примерно совпадает с галактической плоскостью.


Хорошо, одна плоскость у нас есть. Но как получить наглядную линию эклиптики? Давайте подумаем, что такое вообще эклиптика? По современному строгому определению эклиптика — это сечение небесной сферы плоскостью орбиты барицентра (центра массы) Земля-Луна. По эклиптике в среднем движется Солнце, но у нас нет двух Солнц, по которым удобно построить линию, да и созвездие Лебедя при солнечном свете не будет видно. Но если вспомнить, что планеты Солнечной системы тоже движутся приблизительно в той же плоскости, то, получается, что парад планет как раз примерно покажет нам плоскость эклиптики. И сейчас в утреннем небе как раз можно наблюдать Марс, Юпитер и Сатурн.


В результате, в ближайшие недели утром до восхода Солнца можно будет очень наглядно видеть вот такую картину:


Которая, как это ни удивительно, прекрасно согласуется с учебниками астрономии.


А гифку правильнее рисовать так:

Вопрос может вызвать взаимное положение плоскостей. Летим ли мы <-/ или же <-\ (если смотреть с внешней стороны Галактики, северный полюс вверху)? Астрономия говорит, что Солнечная система движется относительно ближайших звезд в направлении созвездия Геркулеса, в точку, расположенную недалеко от Веги и Альбирео (бета Лебедя), то есть правильное положение <-/.


Но этот факт, увы, «на пальцах» не проверить, потому что, пусть и сделали это двести тридцать пять лет назад, но использовали результаты многолетних астрономических наблюдений и математику.

Космический хвост

А вот сравнение Солнечной системы с кометой в видео совершенно корректно. Аппарат NASA IBEX был специально создан для определения взаимодействия границы Солнечной системы и межзвездного пространства. И по его данным хвост есть.



Иллюстрация NASA

Для других звезд мы можем видеть астросферы (пузыри звездного ветра) непосредственно.



Фото NASA

Читайте также: