Vulkan driver что это

Обновлено: 05.07.2024


Я работаю техническим переводчиком ижевской IT-компании CG Tribe, которая предложила мне внести свой вклад в сообщество и начать публиковать переводы интересных статей и руководств.

  1. Изображения
  2. Image view и image sampler
  3. Комбинированный image sampler

9. Загрузка моделей

10. Создание мип-карт

FAQ

Политика конфиденциальности

2. Краткий обзор

Предпосылки возникновения Vulkan


Как и предыдущие графические API, Vulkan задуман как кроссплатформенная абстракция над GPU. Основная проблема большинства таких API заключается в том, что в период их разработки использовалось графическое оборудование, ограниченное фиксированным функционалом. Разработчики должны были предоставить данные о вершинах в стандартном формате и в плане освещения и теней полностью зависели от производителей графических процессоров.

По мере развития архитектуры видеокарт в ней стало появляться все больше программируемых функций. Все новые функции необходимо было каким-то образом объединить с существующими API. Это привело к неидеальным абстракциям и множеству гипотез со стороны графического драйвера о том, как воплотить замысел программиста в современных графических архитектурах. Поэтому для повышения производительности в играх выпускается большое количество обновлений драйверов. Из-за сложности таких драйверов среди поставщиков часто возникают расхождения, например, в синтаксисе, принятом для шейдеров. Помимо этого, в последнее десятилетие также наблюдался приток мобильных устройств с мощным графическим оборудованием. Архитектуры этих мобильных GPU могут сильно отличаться в зависимости от требований по размерам и энергопотреблению. Одним из таких примеров является тайловый рендеринг, который может дать большую производительность за счет лучшего контроля над функционалом. Еще одним ограничением, связанным с возрастом API, является ограниченная поддержка многопоточности, что может привести к появлению узкого места со стороны ЦП.

Vulkan помогает решить эти проблемы, поскольку изначально создан для современных графических архитектур. Это снижает потери на стороне драйвера за счет того, что разработчики могут четко описать свои цели с помощью подробного API. Vulkan позволяет параллельно создавать и отсылать команды в нескольких потоках. Также снижаются расхождения компиляции шейдеров за счет перехода на стандартизованный формат байтового кода и использования одного компилятора. И наконец, Vulkan реализует главную возможность современных видеокарт, объединяя графические и вычислительные возможности в едином API.

Как нарисовать треугольник?


Мы кратко рассмотрим шаги, необходимые для отрисовки треугольника. Это позволит вам получить общее представление о процессе. Подробное описание каждой концепции будет дано в следующих главах.

Шаг 1 — Экземпляр (instance) и физические устройства

Работа с Vulkan начинается с настройки Vulkan API через VkInstance (экземпляр). Экземпляр создается с помощью описания вашей программы и всех расширений, которые вы хотите использовать. После создания экземпляра вы можете запросить, какое оборудование поддерживает Vulkan, и выбрать один или несколько VkPhysicalDevices для выполнения операций. Вы можете сделать запрос по таким параметрам, как размер VRAM и возможности устройств, чтобы выбрать желаемые устройства, если вы предпочитаете использовать специализированные видеокарты.

Шаг 2 — Логическое устройство и семейства очередей

После того, как вы выберете подходящее hardware устройство для использования, вам необходимо создать VkDevice (логическое устройство), где вы более подробно опишете, какие возможности (VkPhysicalDeviceFeatures) будете использовать, например, рендеринг в несколько viewport-ов (multi viewport rendering) и 64-битные числа с плавающей точкой. Вам также необходимо установить, какие семейства очередей вы бы хотели использовать. Многие операции, совершаемые с помощью Vulkan, например, команды рисования и операции в памяти, выполняются асинхронно после отправки в VkQueue. Очереди выделяются из семейства очередей, где каждое семейство поддерживает определенный набор операций. Например, для операций с графикой, вычислительных операций и передачи данных памяти могут существовать отдельные семейства очередей. Кроме того их доступность может использоваться в качестве ключевого параметра при выборе физического устройства. Некоторые устройства с поддержкой Vulkan не предлагают никаких графических возможностей, однако, все современные видеокарты с поддержкой Vulkan, как правило, поддерживают все необходимые нам операции с очередями.

Шаг 3 — Window surface и цепочки показа (swap chain)

Если вас интересует не только внеэкранный рендеринг, вам необходимо создать окно для отображения отрендеренных изображений. Окна можно создать с помощью API исходной платформы или библиотек, таких как GLFW и SDL. В руководстве мы будем использовать GLFW, подробнее о которой мы расскажем в следующей главе.

Нам необходимо еще два компонента, чтобы рендерить в окно приложения: window surface ( VkSurfaceKHR ) и цепочка показа ( VkSwapchainKHR ). Обратите внимание на постфикс KHR , который обозначает, что эти объекты являются частью расширения Vulkan. Vulkan API полностью независим от платформы, поэтому нам необходимо использовать стандартизованное расширение WSI (Window System Integration) для взаимодействия с менеджером окон. Surface – это кроссплатформенная абстракция окон для визуализации, которая, как правило, создается с помощью ссылки на собственный дескриптор окна, например HWND в Windows. К счастью, библиотека GLFW имеет встроенную функцию для работы со специфичными деталями платформы.

Цепочка показа — это набор целей рендеринга. Ее задача — обеспечивать, чтобы изображение, которое рендерится в текущий момент, отличалось от отображаемого на экране. Это позволяет отслеживать, чтобы отображались только готовые изображения. Каждый раз, когда нам нужно создать кадр, мы должны сделать запрос, чтобы цепочка показа предоставила нам изображение для рендеринга. После того, как кадр создан, изображение возвращается в цепочку показа, чтобы в какой-то момент отобразиться на экране. Количество целей рендеринга и условий для отображения готовых изображений на экране зависит от текущего режима. Среди таких режимов можно выделить двойную буферизацию (vsync) и тройную буферизацию. Мы рассмотрим их в главе, посвященной созданию цепочки показа.

Некоторые платформы позволяют рендерить непосредственно на экран через расширения VK_KHR_display и VK_KHR_display_swapchain без взаимодействия с каким-либо менеджером окон. Это позволяет создать surface, которая представляет собой весь экран и может использоваться, например, для реализации вашего собственного менеджера окон.

Шаг 4 — Image views и фреймбуферы

Чтобы рисовать в изображение (image), полученное из цепочки показа, мы должны обернуть его в VkImageView и VkFramebuffer. Image view ссылается на определенную часть используемого изображения, а фреймбуфер ссылается на image views, которые используются как буферы цвета, глубины и шаблонов (stencil). Поскольку в цепочке показа может быть множество разных изображений, мы заранее создадим image view и фреймбуфер для каждого из них и выберем необходимое изображение во время рисования.

Шаг 5 — Проходы рендера

Проходы рендера в Vulkan описывают тип изображений, используемых во время операций рендеринга, то, как они используются, и то, как необходимо обрабатывать их содержимое. Перед отрисовкой треугольника мы сообщим Vulkan, что мы хотим использовать одиночное изображение в качестве буфера цвета и что нам нужно очистить его перед рисованием. Если проход рендера описывает только тип изображений, используемых в качестве буферов, то VkFramebuffer фактически связывает определенные изображения с этими слотами.

Шаг 6 — Графический конвейер (pipeline)

Графический конвейер в Vulkan настраивается с помощью создания объекта VkPipeline. Он описывает конфигурируемое состояние видеокарты, например, размер viewport или операцию буфера глубины, а также программируемое состояние, используя объекты VkShaderModule. Объекты VkShaderModule создаются из байтового кода шейдера. Драйверу также необходимо указать, какие цели рендеринга будут использоваться в конвейере. Мы задаем их, ссылаясь на проход рендера.

Одна из наиболее отличительных особенностей Vulkan по сравнению с существующими API-интерфейсами заключается в том, что почти все системные настройки графического конвейера должны задаваться заранее. Это значит, что если вы хотите переключиться на другой шейдер или немного изменить vertex layout, вам необходимо полностью пересоздать графический конвейер. Поэтому вам придется заранее создать множество объектов VkPipeline для всех комбинаций, необходимых для операций рендеринга. Только некоторые базовые настройки, такие как размер viewport и цвет очистки, могут быть изменены динамически. Все состояния должны быть описаны явно. Так, например, не существует смешивания цветов (color blend state) по умолчанию.

К счастью, поскольку процесс больше напоминает опережающую компиляцию, вместо компиляции «на лету», у драйвера появляется больше возможностей для оптимизации, а производительность оказывается более предсказуемой, так как значительные изменения состояния, например, переключение на другой графический конвейер, указываются явно.

Шаг 7 — Пул команд и буферы команд

  • Начать проход рендера
  • Привязать графический конвейер
  • Нарисовать 3 вершины
  • Закончить проход рендера

Шаг 8 — Основной цикл

После того, как мы отправили команды рисования в буфер команд, основной цикл кажется достаточно простым. Сначала мы получаем изображение из цепочки показа с помощью vkAcquireNextImageKHR . Затем мы можем выбрать соответствующий буфер команд для этого изображения и запустить его с помощью vkQueueSubmit. В конце, мы возвращаем изображение в цепочку показа для вывода на экран с помощью vkQueuePresentKHR .

Операции, отправляемые в очереди, выполняются асинхронно. Поэтому мы должны использовать объекты синхронизации — семафоры —, чтобы обеспечить правильный порядок запуска. Необходимо настроить запуск буфера команд рисования таким образом, чтобы он осуществлялся только после того, как изображение будет извлечено из цепочки показа, в противном случае может возникнуть ситуация, когда мы начнем рендерить изображение, которое все еще считывается для отображения на экране. Вызов vkQueuePresentKHR , в свою очередь, должен дождаться завершения рендеринга, для которого мы будем использовать второй семафор. Он будет уведомлять об окончании отрисовки.

Этот краткий обзор позволяет получить общее представление о предстоящей работе по рисованию вашего первого треугольника. В реальности же шагов гораздо больше. Среди них выделение буферов вершин, создание uniform-буферов и загрузка изображений текстур — все это мы рассмотрим в следующих главах, а пока начнем с простого. Чем дальше мы будем двигаться, тем сложнее будет материал. Обратите внимание, что мы решили пойти хитрым путем, изначально встраивая координаты вершины в вершинный шейдер вместо использования буфера вершин. Такое решение связано с тем, что для управления буферами вершин сначала требуется знакомство с буферами команд.

Подведем краткий итог. Для отрисовки первого треугольника нам необходимо:

  • Создать VkInstance
  • Выбрать поддерживаемую видеокарту (VkPhysicalDevice)
  • Создать VkDevice и VkQueue для рисования и отображения
  • Создать окно, window surface и цепочку показа
  • Обернуть изображения цепочки показа в VkImageView
  • Создать проход рендера, который определяет цели рендеринга и их использование
  • Создать фреймбуфер для прохода рендера
  • Настроить графический конвейер
  • Распределить и записать команды рисования в буфер для каждого изображения цепочки показа
  • Отрисовать кадры в полученные изображения, отправляя правильный буфер команд и возвращая изображения обратно в цепочку показа
Концепты API


В заключение к текущей главе будет приведен краткий обзор того, как структурируются Vulkan API на более низком уровне.

Стандарт оформления кода

Все функции, перечисления и структуры Vulkan обозначены под заголовком vulkan.h , который включен в Vulkan SDK, разработанный LunarG. Установка SDK будет рассмотрена в следующей главе.

Функции имеют префикс vk в нижнем регистре, перечисляемые типы (enum) и структуры имеют префикс Vk , а перечисляемые значения имеют префикс VK_ . API активно использует структуры, чтобы предоставить параметры функциям. Например, создание объектов обычно происходит по следующей схеме:

image

Многие структуры в Vulkan требуют прямого указания типа структуры в члене sType . Член pNext может указывать на структуру расширения и в нашем руководстве всегда будет иметь тип nullptr . Функции, создающие или уничтожающие объект, будут иметь параметр VkAllocationCallbacks, который позволяет вам использовать собственный аллокатор памяти и который в руководстве также будет иметь тип nullptr .

Почти все функции возвращают VkResult, который является либо VK_SUCCESS , либо кодом ошибки. В спецификации указано, какие коды ошибок может возвратить каждая функция и что они обозначают.

Слои валидации

Как уже было сказано, Vulkan был разработан для обеспечения высокой производительности при низких нагрузках на драйвер. Поэтому он включает в себя очень ограниченные возможности автоматического обнаружения и исправления ошибок. Если вы сделаете ошибку, драйвер даст сбой или еще хуже, продолжит работать на вашей видеокарте, но выйдет из строя на других видеокартах.

Поскольку операции в Vulkan расписываются очень подробно, и слои валидации достаточно обширные, вам будет намного проще установить причину черного экрана по сравнению с OpenGL и Direct3D.

Остался всего один шаг, прежде чем мы начнем писать код, и это — настройка рабочей среды.

3. Настройка окружения

Windows


Если вы занимаетесь разработкой для Windows, то, скорее всего, вы используете Visual Studio. Для полной поддержки С++17 необходимо использовать Visual Studio 2017 или 2019. Шаги, описанные ниже, подходят для VS 2017.

Vulkan SDK

Самым важным компонентом для разработки программ с Vulkan является SDK. Он включает в себя заголовочные файлы, стандартные слои валидации, инструменты отладки и загрузчик функций Vulkan. Загрузчик ищет методы драйвера в рантайме (во время исполнения) так же, как это делает библиотека GLEW для OpenGL.

SDK можно загрузить с сайта LunarG. Для этого используйте кнопки внизу страницы. Вам необязательно создавать аккаунт, однако с ним у вас будет доступ к дополнительной документации.


Устанавливая SDK, запомните место установки.
Следующим шагом проверьте, поддерживает ли Vulkan ваша видеокарта и драйвер. Перейдите в папку с SDK, откройте папку Bin и запустите демо-проект vkcube.exe . Должно появиться следующее:


В этой папке есть и другие программы, которые могут оказаться полезными для разработки. Программы glslangValidator.exe и glslc.exe используются для компиляции шейдеров из GLSL в байт-код. Подробно эта тема будет рассмотрена в главе Шейдерные модули. В папке Bin также находятся dll библиотеки загрузчика Vulkan и слоёв валидации, в папке Lib — статические библиотеки, а в папке Include – заголовочные файлы Vulkan. Вы можете изучить и другие файлы, но для руководства они нам не понадобятся.

Как уже было сказано, Vulkan – это API, независимый от платформы, в котором нет инструментов создания окна для отображения результатов рендеринга. Чтобы использовать преимущества кроссплатформенности Vulkan и избежать ужасов Win32, мы будем использовать библиотеку GLFW для создания окна. Есть и другие доступные библиотеки, например, SDL, но GLFW лучше тем, что она абстрагирует не только создание окна, но и некоторые другие платформенно-зависимые функции.

Последнюю версию библиотеки GLFW можно найти на официальном сайте. В руководстве мы будем использовать 64-битные сборки, но вы, разумеется, можете выбрать и 32-битные. В этом случае убедитесь, что вы ссылаетесь на файлы Vulkan SDK в папке Lib32 , а не в Lib . После скачивания распакуйте архив в удобное место. Мы создали новую папку Libraries в папке Visual Studio.



В отличие от DirectX 12, в Vulkan нет библиотеки для операций линейной алгебры, поэтому ее придется скачать отдельно. GLM – это удобная библиотека, разработанная для использования с графическими API, она часто используется с OpenGL.

Библиотека GLM – это header only библиотека. Скачайте последнюю версию и сохраните ее в удобном месте. У вас должна получиться подобная структура каталогов:



Настройка Visual Studio

После установки всех библиотек мы можем настроить проект Visual Studio для Vulkan и написать немного кода, чтобы убедиться, что все работает.

Откройте Visual Studio и создайте новый проект Windows Desktop Wizard . Введите имя проекта и нажмите OK .



Нажмите OK , чтобы создать проект, и добавьте .cpp файл. Наверняка вы и так знаете, как это сделать, но мы не стали пропускать эти действия, чтобы инструкция получилась полной.



Добавьте в файл код, указанный ниже. Вам необязательно пытаться понять его сейчас, важно узнать, соберется ли и запустится ли программа. В следующей главе мы начнем описание с самых азов.


Откройте диалог с настройками проекта и убедитесь, что в меню выбрано All Configurations . Это нужно из-за того, что большинство настроек применяются как в режиме Debug , так и в Release .



Перейдите в C++ -> General -> Additional Include Directories и выберите <Edit. > в выпадающем списке.


Добавьте include директории для Vulkan, GLFW и GLM:

Перейдите в Linker → General → Additional Library Directories и добавьте расположения lib-файлов для Vulkan и GLFW:



Перейдите в Linker → Input и выберите Edit в выпадающем списке Additional Dependencies .


Введите имена lib-файлов Vulkan и GLFW:


И измените настройки стандарта на C++:


Теперь вы можете закрыть диалог с настройками проекта. Если все сделано верно, подсветки ошибок в коде больше не будет.

Не забудьте выбрать для компиляции 64-битный режим.


Нажмите F5 , чтобы скомпилировать и запустить проект. Вы увидите командную строку и окно, подобное этому:


Проверьте, чтобы число расширений не равнялось нулю («X extensions supported» в консоли).

Поздравляем, вы готовы к работе с Vulkan!

Linux

Инструкции ниже предназначены для пользователей Ubuntu, но вы можете следовать им, изменив команды apt на подходящие вам команды менеджера пакетов. Вам нужен компилятор с поддержкой С++17 (GCC 7+ или Clang 5+). Вам также понадобится утилита make.

Vulkan Packages

Самыми важными компонентами для разработки с использованием Vulkan под Linux являются загрузчик Vulkan, слои валидации и несколько утилит командной строки для проверки совместимости вашего компьютера с Vulkan:

  • sudo apt install vulkan-tools : утилиты командной строки, особенно можно выделить vulkaninfo и vkcube . Запустите их, чтобы проверить, поддерживает ли ваш ПК Vulkan.
  • sudo apt install libvulkan-dev : устанавливает загрузчик Vulkan. Загрузчик ищет методы драйвера в рантайме (во время исполнения) так же, как это делает библиотека GLEW для OpenGL.
  • sudo apt install vulkan-validationlayers-dev : устанавливает стандартные слои валидации, которые необходимы при отладке программ с Vulkan. О них мы поговорим в следующей главе.


Как уже было сказано, Vulkan – это API, независимый от платформы, в котором нет инструментов создания окна для отображения результатов рендеринга. Чтобы использовать преимущества кроссплатформенности Vulkan и избежать ужасов X11, мы будем использовать библиотеку GLFW для создания окна. Есть и другие доступные библиотеки, например, SDL, но GLFW лучше тем, что она абстрагирует не только создание окна, но и некоторые другие платформенно-зависимые функции.

Мы будем устанавливать GLFW с помощью следующей команды:

В отличие от DirectX 12, в Vulkan нет библиотеки для операций линейной алгебры, поэтому ее придется скачать отдельно. GLM – это удобная библиотека, разработанная для использования с графическими API, она часто используется с OpenGL.

Библиотека GLM – это header only библиотека. Ее можно установить из пакета libglm-dev :

Компилятор шейдеров

Теперь, когда настройка почти завершена, осталось установить программу для компиляции шейдеров из GLSL в байт-код.

Два наиболее известных компилятора шейдеров — это glslangValidator от Khronos Group и glslc от Google. По использованию glslc похож на GCC и Clang, поэтому мы остановим выбор на нем. Скачайте бинарники и скопируйте glslc в /usr/local/bin . Обратите внимание, что, в зависимости от ваших прав доступа, вам может понадобиться команда sudo . Для тестирования запустите glslc , после чего должно появиться предупреждение:

glslc: error: no input files

Мы подробно рассмотрим glslc в главе о шейдерных модулях.

Настройка проекта для makefile

После установки всех библиотек мы можем настроить проект makefile для Vulkan и написать немного кода, чтобы убедиться, что все работает.

Создайте новую папку в удобном месте и назовите ее VulkanTest . Создайте файл с именем main.cpp и вставьте в него код, приведенный ниже. Вам необязательно пытаться понять его сейчас, важно узнать, соберется ли и запустится ли программа. В следующей главе мы начнем описание с самых азов.


Следующим шагом будет написание makefile для компиляции и запуска. Создайте новый пустой файл с именем Makefile . Предполагается, что у вас уже есть начальный опыт работы с makefiles. Если нет, то это руководство поможет вам быстро войти в курс дела.

Сначала необходимо определить несколько переменных, чтобы упростить оставшуюся часть файла. Определите переменную CFLAGS , которая укажет базовые флаги компилятора:


Мы используем современный С++ ( -std=c++17 ). Также мы задаем уровень оптимизации О2. Можно удалить уровень -О2 для более быстрой компиляции программ, но для релизной сборки его все равно нужно будет вернуть.

Аналогично определите базовые флаги линкера в переменной LDFLAGS :


Флаг -lglfw подключает библиотеку GLFW, -lvulkan — загрузчик Vulkan, а остальные флаги — низкоуровневые библиотеки и зависимости самой GLFW.

Теперь вам будет несложно определить правило для компиляции VulkanTest . Не забудьте, что для отступов необходимо использовать табы вместо пробелов.


Проверьте, работает ли сборка. Сохраните makefile и запустите make из папки с main.cpp и Makefile . В результате должен получиться исполняемый файл VulkanTes t.

Теперь необходимо задать еще два правила — test и clean . Test запускает исполняемый файл, а clean удаляет его.


Запуск команды make test позволит убедиться, что программа работает успешно. При закрытии пустого окна программа должна завершиться успешным кодом возврата ( 0 ). У вас должен получиться готовый makefile, похожий на приведенный ниже:


Вы можете использовать эту структуру каталогов в качестве шаблона для проектов Vulkan. Для этого скопируйте ее, переименуйте, например, в HelloTriangle и удалите весь код из main.cpp .
Итак, теперь вы готовы к настоящему приключению.

MacOS

Инструкции ниже предназначены для тех, кто использует Xcode и менеджер пакетов Homebrew. Имейте в виду, что версия MacOS не должна быть ниже 10.11, а ваше устройство должно поддерживать Metal API.

Vulkan SDK

Самым важным компонентом для разработки программ с Vulkan является SDK. Он включает в себя заголовочные файлы, стандартные слои валидации, инструменты отладки и загрузчик функций Vulkan. Загрузчик ищет методы драйвера в рантайме (во время исполнения) так же, как это делает библиотека GLEW для OpenGL.

SDK можно загрузить с сайта LunarG. Для этого используйте кнопки внизу страницы. Вам необязательно создавать аккаунт, однако с ним у вас будет доступ к дополнительной документации.


Версия SDK для MacOS использует библиотеку MoltenVK. MacOS не имеет прямой поддержки Vulkan, а MoltenVK используется как прослойка для передачи вызовов в Apple Metal. Благодаря этому вы можете воспользоваться преимуществами отладки и производительности Apple Metal.


После загрузки MoltenVK извлеките содержимое в любую папку (имейте в виду, что вам необходимо будет ссылаться на нее при создании проекта в Xcode). Внутри извлеченной папки, в папке Applications , должны находиться исполняемые файлы, которые позволят запустить несколько демо-проектов с использованием SDK. Запустите исполняемый файл vkcube , и вы увидите следующее:


Как уже было сказано, Vulkan – это API, независимый от платформы, в котором нет инструментов создания окна для отображения результатов рендеринга. Мы будем использовать библиотеку GLFW для создания окна. Есть и другие доступные библиотеки, например, SDL, но GLFW лучше тем, что она абстрагирует не только создание окна, но и некоторые другие платформенно-зависимые функции.

Для установки GLFW на MacOS мы будем использовать менеджер пакетов Homebrew:

В Vulkan нет библиотеки для операций линейной алгебры, поэтому ее придется скачать отдельно. GLM – это удобная библиотека, разработанная для использования с графическими API, она часто используется с OpenGL.

Библиотека GLM – это header only библиотека. Ее можно установить из пакета glm :

Настройка Xcode

После установки всех библиотек мы можем настроить проект Xcode для Vulkan. Всякий раз при упоминании папки vulkansdk , мы будем иметь в виду папку, в которую вы извлекли Vulkan SDK.

Запустите Xcode и создайте новый проект Xcode. В появившемся окне выберите Application > Command Line Tool.


Выберите Next , введите имя проекта и в пункте Language выберите C++ .


Нажмите Next , чтобы создать проект (в актуальном XCode12 вам потребуется ещё выбрать место для папки проекта — Прим. пер.). Когда проект будет создан, измените код в файле main.cpp на следующий:


Имейте в виду, вам необязательно пытаться понять весь код сейчас. Мы просто хотим использовать некоторые вызовы API, чтобы убедиться, что все работает правильно.

Xcode покажет некоторые ошибки, например, библиотеки, которые не были найдены. Необходимо настроить проект так, чтобы устранить эти ошибки. Выберите ваш проект в панели Project Navigator. Откройте вкладку Build Settings и выполните следующее:

  • Найдите поле Header Search Paths и добавьте ссылку на /usr/local/include (это место, куда Homebrew устанавливает заголовочные файлы, поэтому здесь должны быть файлы glm и glfw3) и ссылку на vulkansdk/macOS/include для заголовочных файлов Vulkan.
  • Найдите поле Library Search Paths и добавьте ссылку на /usr/local/lib (это еще одно место, куда Homebrew устанавливает библиотечные файлы, поэтому здесь должны быть файлы glm и glfw3) и ссылку на vulkansdk/macOS/lib .

(На скриншоте на каждый параметр приходится по одному пути. Но, если следовать этому мануалу, вы получите по два пути на параметр. — Прим. пер.)

Теперь перейдем во вкладку Build Phases → Link Binary With Libraries и добавим фреймворки glfw3 и vulkan . Чтобы упростить задачу, мы будем добавлять в проект динамические библиотеки (если вы хотите использовать статические библиотеки, вы можете изучить документацию к ним).

  • Для glfw откройте папку /usr/local/lib (для этого вызовите Spotlight – Command+Space и введите в строку поиска /usr/local/lib – Прим. пер.), где вы найдете файл с именем, похожим на libglfw.3.x.dylib (“x” — это номер версии библиотеки; он зависит от даты загрузки пакета из Homebrew). Перетащите файл во вкладку Linked Frameworks and Libraries в Xcode.
  • Для vulkan перейдите в vulkansdk/macOS/lib . Сделайте то же самое с файлами libvulkan.1.dylib и libvulkan.1.x.xx.dylib (здесь “x” — это номер версии загруженного SDK).

Конфигурация Xcode должна иметь следующий вид:


Осталось настроить несколько переменных среды. В панели инструментов Xcode перейдите в Product > Scheme > Edit Scheme. и во вкладке Arguments добавьте две переменные среды:

• VK_ICD_FILENAMES = vulkansdk/macOS/share/vulkan/icd.d/MoltenVK_icd.json
• VK_LAYER_PATH = vulkansdk/macOS/share/vulkan/explicit_layer.d

У вас должно получиться следующее:


Итак, настройка завершена! После запуска проекта (не забудьте установить конфигурацию сборки Debug или Release) вы увидите следующее:


Оформление API и основы

Пожалуй, стоит начать с самого простого. Так как над Vulkan API работали Khronous Group, синтаксис весьма похож на OpenGL. Во всём API есть префикс vk. К примеру функции (порой даже с очень длинными названиями) выглядят так: vkDoSomething(. ), имена структур или хэндлов: VkSomething, а все константные выражения (макросы, макровызовы и элементы перечислений): VK_SOMETHING. Также, есть особый вид функций — команды, которым добавляется префикс Cmd: vkCmdJustDoIt(. ).

Писать на Vulkan можно как на C, так и на C++. Но второй вариант даст, конечно же, больше удобства. Есть (и будут создаваться) порты на другие языки. Кто-то уже сделал порт на Delphi, кто-то желает (зачем?) порт на Python.

Итак, как же создать рендер контекст? Никак. Здесь его нет. Вместо это придумали другие вещи с другими названиями, которые даже будут напоминать DirectX.

Устройство

Vulkan разделяет понятия физического устройства и логического. Физическим устройством может быть ваша видеокарта (и не одна) или процессор, поддерживающий графику. Логическое устройство создаётся на основе физического: собирается информацию о физических устройствах, выбирается нужное, подготавливается другая необходимая информация и создаётся устройство. Может быть несколько логических устройств на основе одного физического, но вот объединять для единой работы физические устройства (пока?) нельзя.

Итак, что же за информацию мы собираем? Это, конечно же, поддерживаемые форматы, память, возможности и, конечно же, семейства очередей.

1. Вступление

Конвейеры

Ниже показаны два конвейера Vulkan:

Vulkan Pipeline

Т.е. в Vulkan есть два конвейера: графический и вычислительный. С помощью графического, мы, конечно же, можем рисовать, а вычислительный… вычислять. Что же ещё? Результаты вычислений могут потом отправится в графический конвейер. Так можно с лёгкостью сэкономить время на системе частиц, например.

Изменить порядок или изменить сами стадии конвейера нельзя. Исключение составляют программируемые стадии (шейдеры). Также можно отправлять разновидные данные в шейдеры (и не только) через дескрипторы.

Для конвейера можно создать кэш, который может быть использован (снова и снова) и в других конвейерах и даже после перезапуска приложения.

Конвейер необходимо настроить и ассоциировать с командным буфером, прежде чем последний будет использовать команды конвейера.

Так как конвейер, это фактически вся информация о том, как нужно работать с поступающими данными, то смена конвейера (а это информация о шейдерах, дескрипторах, растеризации и прочее) может дорого обойтись по времени. Поэтому разработчики предоставили возможность наследования конвейера. При смене конвейера на дочерний, родительский или между дочерними уйдёт меньше затрат производительности. Но это также и удобство для разработчиков, как например ООП.

Проход отрисовки, графический конвейер и фреймбуфер

Итак, получаем следующую матрёшку:

Для того, чтобы можно было использовать команды отрисовки, нужен графический конвейер. В графическом конвейере необходимо указать проход отрисовки (Render Pass), который содержит информацию о подпроходах (subpass), их зависимостей друг от друга и прикреплениях (attachment). Прикрепление — информация о изображении, которое будет использоваться во framebuffer'ах. Framebuffer создаётся специально для определённого прохода отрисовки. Чтобы начать проход, нужно указать как сам проход (а также, если нужно, подпроход), так и framebuffer. После начала прохода можно рисовать. Можно также переключаться между подпроходами. После того, как рисование завершено, можно завершить проход.

1. Вступление

Шейдеры

Vulkan поддерживает 6 видов шейдеров: вершинный, контроль тесселяции, анализ тесселяции, геометрический, фрагментный (он же пиксельный) и вычислительный. Написать их можно на читаемом SPIR-V, а потом собрать в байт код, который в приложении мы запечатаем в модуль, т.е. создадим shader-модуль из этого кода. Конечно же, мы можем написать его на привычном GLSL и потом конвертировать в SPIR-V (транслятор уже есть). И, конечно же, вы можете написать свой транслятор и даже ассемблер — исходники и спецификации выложены в OpenSource, ничто не мешает написать вам сборщик для своего High Level SPIR-V. А может кто-то уже написал.
Байт код потом транслируется в команды, специфичные для каждой видеокарты, но делается это намного быстрее, чем из сырого GLSL кода. Подобная практика применяется и в DirectX — HLSL сначала преобразуются в байт код, и этот байт код может быть сохранён и потом использован, чтобы не компилировать шейдеры снова и снова.

Vulkan. Руководство разработчика. Настройка окружения


  1. Изображения
  2. Image view и image sampler
  3. Комбинированный image sampler

9. Загрузка моделей

10. Создание мип-карт

FAQ

Политика конфиденциальности

Очереди (queue) и семейства очередей (queue family)

Устройство может (или не может) делать следующие 4 вещи: рисовать графику, производить разные вычисления, копировать данные, а также работать с разреженной памятью (sparse memory management). Эти возможности представлены в виде семейств очередей: каждое семейство поддерживает определённые (может быть все сразу) возможности. И если идентичные семейства были разделены, Vulkan всё равно представит их как одно семейство, чтобы мы не так сильно страдали с кодом и выбирали нужное семейство.

После того, как вы выбрали нужное (или нужные) семейства, из них можно получить очереди. Очереди — это место, куда будут поступать команды для устройства (потом устройство их будет брать из очередей и выполнять). Очередей и семейств, кстати, не сильно много. У NVIDIA обычно 1 семейство со всеми возможностями на 16 очередей. После того, как вы закончили с подбором семейств и количеством очередей, можно создавать устройство.

Окна и дисплеи

А закончит эту статью рассказ о WSI (Window System Integration) и цепочке переключений (swapchain). Для того, чтобы выводить что-либо в окно или на экран — нужны специальные расширения.

Для окон это базовое расширение плоскости и расширение плоскости, специфичной для каждой из систем (win32, xlib, xcb, android, mir, wayland). Для дисплея (т.е. FullScreen) нужно расширение display, но в целом и то и другое используют расширение swapchain.

Цепочка переключений не связана с графическим конвейером, поэтому простой Clear Screen выходит без настройки всего этого. Всё достаточно просто. Есть определённый движок показа (presentation engine), в котором есть очередь изображений. Одно изображение показывается на экран, другие дожидаются своей очереди. Количество изображений мы также можем указать. Есть также несколько режимов, которые позволят дождаться сигнала вертикальной синхронизации.

Метод работы примерно таков: мы запрашиваем индекс свободного изображения, вызываем командный буфер, который скопирует результат из Framebuffer в это изображение, и отправляем команду о отправки изображения в очередь. Звучит легко, но с учётом того, что потребуется синхронизация — всё чуточку сложнее, так как единственное, чего ожидает хост — это индекс изображения, которое вскоре будет доступно. Командный буфер ждёт сигнала семафора, который будет свидетельствовать о доступности изображения, и потом сам подать сигнал через семафор о том, что выполнение буфера, в следствии и копирование, завершено. И изображение действительно поступит в очередь по сигналу последнего семафора. Всего два семафора: о доступности изображения для копирования и о доступности изображения для показа (т.е. о завершении копирования).

Кстати говоря, я проверил, что один и тот же командный буфер действительно отправлялся в очередь несколько раз. Можете подумать сами, что это значит.

В этой статье я попытался рассказать о наиболее важных частях Vulkan API, но многое всё ещё не рассказано и это вы можете узнать сами. Стабильного вам FPS и приятного кодинга.

Vulkan API (glNext) от Khronos Group

Относительно недавно вышел новый Vulkan API — можно сказать, наследник OpenGL, хотя основан Vulkan на API Mantle от AMD.
Конечно, развитие и поддержка OpenGL не прекратилось, а также в свет вышел и DirectX 12. Что там с DirectX 12 и почему его поставили только на Windows 10 — я, к сожалению (а может и к счастью) не знаю. Но вот кроссплатформенный Vulkan меня заинтересовал. В чём же особенности Vulkan и как правильно его использовать я постараюсь рассказать вам в этой статье.

Vulkan Logo

Итак, для чего нужен Vulkan и где он может быть использован? В играх и приложениях, работающие с графикой? Конечно! Вычислять, как это делает CUDA или OpenCL? Без проблем. Обязательно ли для этого нам нужно окно или дисплей? Конечно нет, вы можете сами указать, куда транслировать ваш результат или не транслировать его вообще. Но обо всём по порядку.

Управление памятью и ресурсы

Память в Vulkan распределяется хостом и только хостом (за исключением swapchain). Если изображение (или другие данные) нужно поместить в устройство — выделяется память. Сначала создаётся ресурс определённых размеров, затем запрашивается его требования к памяти, выделяется для него память, затем ресурс ассоциируется с участком этой памяти и только потом можно копировать в этот ресурс необходимые данные. Также, есть память, которая может быть непосредственно изменена с хоста (host visible), есть локальная память устройства (память видеокарты, например) ну и также другие виды памяти, по своему влияющие на скорость доступа к ним.

В Vulkan можно также написать своё распределение памяти хоста, настроив Callback функции. Но учтите, что требования к памяти, это не только её размер, но и выравнивание (alignment).

Сами ресурсы бывают двух видов: буферы (buffers) и изображения (images). И те и другие разделяются по назначению, но если буфер — просто коллекция различных данных (вершинный, индексный или буфер констант), то изображение всегда имеет свой формат.

Выделяйте участок памяти, в который можете поместить сразу несколько ресурсов. Количество выделений ограничено, и вам может не хватить. Зато количество ассоциаций не ограничено.

Что означает появление технологии Vulkan для пользователей



На минувшей неделе стало известно о глобальном релизе графических драйверов, которые отныне поддерживают новый низкоуровневый API Vulkan. Первыми, кто обратил внимание на эту новость, стали геймеры с настольными компьютерами, поскольку Vulkan в первую очередь затрагивает работу графической составляющей и со временем должен заменить морально устаревший стандарт OpenGL ES. Последний дебютировал ещё в те времена, когда компьютеры работали на одноядерных процессорах и большинство пользователей даже не задумывались о многоядерных высокопроизводительных устройствах. Однако всё меняется, и число доступных ядер в настольных и мобильных процессорах уже приближается к дюжине. Для максимально эффективного использования их потенциала и была начата работа над новым API.

В общем представлении Vulkan должен принести улучшенный игровой и пользовательский опыт, а также более высокое качество игр, в том числе на Android. По сравнению с традиционными OpenGL и Direct3D, Vulkan предоставляет возможность реализовать многопоточность и более эффективно использовать центральный процессор. Технология изначально основана на разработке от AMD под названием Mantle, однако вскоре идея была подхвачена консорциумом Khronos Group, в который сегодня входит больше 100 членов по всему миру. Vulkan версии 1.0 был выпущен для Windows, Linux и Android. Особенно большое влияние Vulkan окажет именно на мобильную платформу, поскольку предоставит разработчикам прямой доступ к GPU для полного контроля над его работой. Можно ожидать не только повышение качества изображения, но и уменьшение энергопотребления при том же результате.

Что означает появление технологии Vulkan для пользователей

Что означает появление технологии Vulkan для пользователей

NVIDIA уже опубликовала необходимые образы для разработчиков, чтобы те могли адаптировать их к нынешним Android-планшетам с чипами NVIDIA, однако сегодня их доля на рынке мизерна. Среди Khronos Group мелькают имена известных производителей, в частности, Google, Samsung, Sony, Qualcomm, Huawei и некоторых других, однако как скоро они начнут внедрять Vulkan, сказать довольно сложно. Хочется верить, что Google сделает Vulkan приоритетной разработкой для Android, однако пока что об этом официально ничего не сообщается.

2. Краткий обзор

Начало работы и основные понятия

Vulkan разделяет два понятия — это устройство (device) и хост (host). Устройство будет выполнять все команды, отправленные ему, а хост будет их отправлять. Фактически, наше приложение и есть хост — у Vulkan такая терминология.

Для работы с Vulkan нам понадобится хэндлы на его экземпляр (instance), и может быть даже не один, а также на устройство (device), опять же, не всегда может хватать одного.

Vulkan может быть легко загружен динамически. В SDK (разработали LunarG), если был объявлен макрос VK_NO_PROTOTYPES и загружать библиотеку Vulkan своими руками (не линковщиком, а определёнными средствами в коде), то прежде всего нужна будет функция vkGetInstanceProcAddr, с помощью которой можно узнать адреса основных функций Vulkan — те которые работают без экземпляра, включая функцию его создания, и функции, которые работают с экземпляром, включая функцию его разрушения и функцию создания устройства. После создания устройства можно получить функции, которые работают с ним (а также его дочерними хэндлами) через vkGetDeviceProcAddr.

Интересный факт: в Vulkan всегда нужно заполнить определённую структуру данными, чтобы создать какой-либо объект. И всё в Vulkan работает примерно таким образом: заранее подготовил — можно использовать часто и с высокой производительностью. В информацию об экземпляре можно также поместить информацию о вашем приложении, версии движка, версии используемого API и другую информацию.

Слои и расширения

В чистом Vulkan нет сильных проверок входящих данных на правильность. Ему сказали что-то сделать — он сделает. Даже если это приведёт к ошибке приложения, драйвера или видеокарты. Это сделали ради производительности. Тем не менее, можно без проблем подключить проверочные слои, а также расширения к экземпляру и/или устройству, если это необходимо.

Слои (layers)

В основном, предназначение слоёв — проверить входящие данные на ошибки и отслеживать работу Vulkan. Работают они очень просто: допустим, вызываем функцию, и попадает она в самый верхний слой, заданный при создании устройства или экземпляра ранее. Он всё проверяет на правильность, после этого передаёт вызов в следующий. И так будет, пока дело не дойдёт до ядра Vulkan. Конечно же, можно создать собственные слои. Например, Steam выпустила слой SteamOverlay (хотя и не знаю, что он вообще делает). Тем не менее, слои будут молчать, но не доведут до краха приложения. Как узнать, правильно ли всё сделано? Для этого есть специальное расширение!

Расширения (extensions)

Команды, их исполнение и синхронизация

Командный буфер бывает двух видов: первичный и вторичный. Первичный отправляется прямо в очередь. Вторичный же не может быть отправлен — он запускается в первичном. Записываются команды в таком же порядке, в каком были вызваны функции. В очередь они поступают в таком же порядке. А вот исполнятся они могут почти в «хаотичном» порядке. Чтобы не было полного хаоса в приложении разработчики Vulkan предусмотрели средства синхронизации.

Теперь, самое важное: хост не ожидает завершения исполнения команд и командных буферов. По крайней мере до того момента, пока не укажете это явным способом. После отправления командных буферов в очередь управление сразу возвращается приложению.

Есть 4 примитива синхронизации: забор (fence), семафор (semaphore), событие (event) и барьер (barrier).

Забор самый простой метод синхронизации — он позволяет хосту ожидать выполнение определённых вещей. Например, завершения выполнения командного буфера. Но используется забор редко.

Семафор — способ синхронизации внутри устройства. Никак нельзя посмотреть его состояние или подождать его на хосте, нельзя также ждать его внутри командного буфера, но можем указать, какой семафор должен подать сигнал при завершении исполнения всех команд буфера, и какой семафор ждать перед тем, как начать выполнение команд в буфере. Только ждать будет не весь буфер, а его определённая стадия.

Стадии конвейера (pipeline stages) и зависимости исполнения Как уже было сказано, не обязательно команды в очереди будут исполнятся по порядку. Если быть точнее, то последующие команды не будут ждать завершения предыдущих. Они могут выполнятся параллельно, или исполнение предыдущей команды может завершиться намного позже последующих. И это вполне нормально. Но некоторые команды зависят от исполнения других. Вы можете разделить их на два берега: «до» и «после», и также указать, какие стадии берега «до» должны обязательно выполнится (т.е. команды могут завершиться не полностью или не все), прежде чем начнут выполняться указанные стадии команд берега «после». Например, отрисовка изображения может приостановиться, чтобы сделать определённые вещи, а потом снова продолжить делать рисовать. Также может быть и цепочка зависимостей, но не будем уходить глубоко в леса Сибири Vulkan.

События — элемент «тонкой» настройки. Подать сигнал можно как с хоста, так и с устройства, ждать можно также и на устройстве, и на хосте. Событие определяет зависимость двух сетов команд (до и после) в командном буфере. И для события есть также специальная псевдо-стадия, которая позволяет ждать хост.

Барьер опять может быть использован только в устройстве, а ещё точнее — в командном буфере, объявляя зависимости первого и второго сета команд. Также можно дополнительно указать барьеры памяти, которые бывают трёх видов: глобальный барьер, барьер буфера и барьер изображения. Они не дадут ненароком прочитать данные, которые в данный момент записываются и/или наоборот, в зависимости от указанных параметров.

Читайте также: