Прохождение планет по диску солнца

Обновлено: 03.07.2024

Планеты Солнечной системы обращаются вокруг Солнца по эллиптическим орбитам (см.законы Кеплера) и делятся на две группы. Планеты, которые расположены ближе к Солнцу, чем Земля, называются нижними. Это Меркурий и Венера. Планеты, которые расположены дальше от Солнца, чем Земля, называются верхними. Это Марс, Юпитер, Сатурн, Уран, Нептун и Плутон.

Планеты в процессе обращения вокруг Солнца могут располагаться относительно Земли и Солнца произвольным образом. Такое взаимное расположение Земли, Солнца и планеты называется конфигурацией. Некоторые из конфигураций являются выделенными и носят специальные названия (см. рис. 19).

Рис. 19. Конфигурации планет. 1 - орбита верхней планеты, 2 - орбита Земли (З.), 3 - орбита нижней планеты. Конфигурации нижней планеты: в.с. - верхнее соединение, н.с. - нижнее соединение, В.э. - наибольшая восточная элонгация, З.э. - наибольшая западная элонгация.

Нижняя планета может располагаться на одной линии с Солнцем и Землей: либо между Землей и Солнцем - нижнее соединение, либо за Солнцем - верхнее соединение. В момент нижнего соединения может произойти прохождение планеты по диску Солнца (планета проецируется на диск Солнца). Но из-за того, что орбиты планет не лежат в одной плоскости, такие прохождения случаются не каждое нижнее соединение, а достаточно редко. Конфигурации, при которых планета при наблюдении с Земли находится на максимальном угловом удалении от Солнца (это наиболее благоприятные периоды для наблюдения нижних планет), называются наибольшими элонгациями, западной и восточной.

Верхняя планета также может находиться на одной линии с Землей и Солнцем: за Солнцем - соединение, и по другую сторону от Солнца - противостояние. Противостояние - это самое благоприятное время для наблюдения верхней планеты. Конфигурации, при которых угол между направлениями с Земли на планету и на Солнце равен 90 o , называются квадратурами, западной и восточной.

Промежуток времени между двумя последовательными одноименными конфигурациями планеты называется ее синодическим периодом обращения P, в отличие от истинного периода ее обращения относительно звезд, называемого поэтому сидерическим S. Разница между этими двумя периодами возникает из-за того, что Земля тоже обращается вокруг Солнца с периодом T. Синодический и сидерический периоды связаны между собой:

для нижней планеты, и

10.2. Законы Кеплера

Законы, по которым планеты обращаются вокруг Солнца, были эмпирически (т.е. из наблюдений) установлены Кеплером, а затем теоретически обоснованы на основе закона всемирного тяготения Ньютона.

Первый закон. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон. При движении планеты ее радиус-вектор описывает равные площади за равные промежутки времени.

Третий закон. Квадраты сидерических времен обращений планет относятся друг к другу как кубы больших полуосей их орбит (как кубы их средних расстояний от Солнца):

Третий закон Кеплера является приближенным, из закона всемирного тяготения был получен уточненный третий закон Кеплера:

Третий закон Кеплера выполняется с хорошей точностью только потому, что массы планет много меньше массы Солнца .

Эллипс - это геометрическая фигура (см. рис. 20), у которой есть две главные точки - фокусы F1, F2, и сумма расстояний от любой точки эллипса до каждого из фокусов есть величина постоянная, равная большой оси эллипса. У эллипса есть центр O, расстояние от которого до наиболее удаленной точки эллипса называется большой полуосью a, а расстояние от центра до самой ближайшей точки называется малой полуосью b. Величина, которая характеризует сплюснутость эллипса, называется эксцентриситетом e:

Окружность является частным случаем эллипса (e=0).

Расстояние от планеты до Солнца изменяется от наименьшего, равного

(эта точка орбиты называется перигелием) до наибольшего, равного

(эта точка орбиты называется афелием).

10.3. Движение искусственных небесных тел

Движение искусственных небесных тел подчиняется тем же законам, что и естественных. Тем не менее, необходимо отметить ряд особенностей.

Главное - размеры орбит искусственных спутников, как правило, сравнимы с размерами планеты, вокруг которой они обращаются, поэтому часто говорят о высоте спутника над поверхностью планеты (рис.21). При этом надо учитывать, что в фокусе орбиты спутника находится центр планеты.

Для искусственных спутников вводят понятие первой и второй космической скорости.

Первая космическая скорость или круговая скорость - это скорость кругового орбитального движения у поверхности планеты на высоте h:

Это минимально необходимая скорость, которую необходимо придать космическому аппарату, чтобы он стал искусственным спутником данной планеты. Для Земли у поверхности vк = 7.9 км/сек.

Вторая космическая скорость или параболическая скорость - это скорость, которую необходимо придать космическому аппарату, чтобы он мог покинуть сферу притяжения данной планеты по параболической орбите:

Для Земли вторая космическая скорость равна 11.2 км/сек.

Скорость небесного тела в любой точке эллиптической орбиты на расстоянии R от тяготеющего центра может быть рассчитана по формуле:

Здесь повсюду см 3 /(г с 2 ) - это гравитационная постоянная.

4. Может ли случиться прохождение Марса по диску Солнца? Прохождение Меркурия? Прохождение Юпитера?

5. Можно ли увидеть Меркурий вечером на востоке? А Юпитер?

46. Противостояние Марса произошло 19 мая. В каком созвездии он был виден?

Решение: Орбиты всех планет лежат приблизительно в одной плоскости, поэтому планеты двигаются по небесной сфере примерно по эклиптике. В момент противостояния прямые восхождения Марса и Солнца отличаются на 180 o : . Вычислим на 19 мая. 21 марта оно равно 0 o . В день прямое восхождение Солнца увеличивается примерно на 1 o . С 21 марта по 19 мая прошло 59 дней. Значит, , а . На небесной карте можно увидеть, что эклиптика при таком прямом восхождении проходит по созвездиям Весы и Скорпион, значит Марс находился в одном из этих созвездий.

47. (398) Наилучшая вечерняя видимость Венеры (наибольшее ее удаление к востоку от Солнца) была 5 февраля. Когда в следующий раз наступила видимость Венеры в тех же условиях, если ее сидерический период обращения равен 225 d ?

Решение: Наилучшая вечерняя видимость Венеры наступает во время ее восточной элонгации. Следовательно, следующая наилучшая вечерняя видимось наступит во время следующей восточной элонгации. А промежуток времени между двумя последовательными восточными элонгациями равен синодическому периоду обращения Венеры и легко может быть вычислен:

или P=587 d . Значит, следующая вечерняя видимость Венеры в тех же условиях наступит через 587 дней, т.е. 14-15 сентября следующего года.

48. (663) Определить массу Урана в единицах массы Земли, сравнивая движение Луны вокруг Земли с движением спутника Урана - Титанией, обращающегося вокруг него с периодом 8 d .7 на расстоянии 438 000 км. Период обращения Луны вокруг Земли 27 d .3, и среднее расстояние ее от Земли составляет 384 000 км.

Решение: Для решения задачи необходимо воспользоваться третьим уточненным законом Кеплера. Так как для любого тела массой m, обращающегося вокруг другого тела массой на среднем расстоянии a с периодом T:

то мы имеем право для любой пары обращающихся друг вокруг друга небесных тел записать равенство:

Принимая за первую пару Уран с Титанией, а за вторую - Землю с Луной, а также пренебрегая массой спутников по сравнению с массой планет получим:

49. Принимая орбиту Луны за окружность и зная орбитальную скорость движения Луны vЛ = 1.02 км/с, определить массу Земли.

Решение: Вспомним формулу для квадрата круговой скорости (35) и подставим среднее расстояние Луны от Земли aЛ (см. предыдущую задачу):

50. Вычислить массу двойной звезды Центавра, у которой период обращения компонентов вокруг общего центра масс T=79 лет, а расстояние между ними 23.5 астрономических единицы (а.е.). Астрономической единицей называется расстояние от Земли до Солнца, равное примерно 150 млн. км.

Решение: Решение этой задачи аналогично решению задачи о массе Урана. Только при определении масс двойных звезд их сравнивают с парой Солнце-Земля и выражают их массу в массах Солнца.

51.(1210) Вычислите линейные скорости космического корабля в перигее и апогее, если над Землей в перигее он пролетает на высоте 227 км над поверхностью океана и большая ось его орбиты составляет 13 900 км. Радиус и масса Земли 6371 км и 6.0 10 27 г.

Решение: Рассчитаем расстояние от спутника до Земли в апогее (наибольшем расстоянии от Земли). Для этого необходимо зная расстояние в перигее (наименьшее расстояние от Земли) вычислить эксцентриситет орбиты спутника по формуле (31) и затем определить искомое расстояние используя формулу (32). Получим ha = 931 км.

Далее воспользуемся формулой (35) для вычисления скорости тела на любом расстоянии от тяготеющего центра и вычислим скорость в перигее и апогее:

Получим vп = 8 км/сек, va=7.2 км/сек.

52. (393) Синодический период обращения одного из астероидов составляет 3 года. Каков звездный период его обращения около Солнца?

53. (400) Найти среднее суточное движение Меркурия по орбите (величину дуги орбиты, которую он проходит за земные сутки), если синодический период его обращения вокруг Солнца равняется 115.88 суткам.

54. (417) С какой видимой угловой скоростью Венера пересекает диск Солнца? Сколько времени длится ее прохождение по диску Солнца, если оно центральное? Расстояние Венеры от Солнца 0.723 а.е., синодический период обращения 584 дня, угловой диаметр Солнца 32'.

55. (662) Вычислить массу Нептуна относительно массы Земли, зная, что его спутник отстоит от центра планеты на 354 000 км и период его обращения равен 5 суткам 21 часу.

56. (671) Какова должна быть масса Земли (по сравнению с действительной), чтобы Луна обращалась вокруг нее с современным периодом, но на вдвое большем расстоянии?

57. (675) Удержало ли бы Солнце нашу Землю, несущуюся вокруг него со скоростью 29.76 км/сек, если бы масса Солнца внезапно уменьшилась в два раза?

58. (1214) Для целей связи нужны спутники, которые "висят" над одной и той же точкой Земли, так называемые геостационарные спутники. На какой высоте над поверхностью Земли они должны находиться?

59. (1217) Космонавты облетают Луну по круговой орбите на высоте 50 км. На сколько им надо увеличить двигателями скорость своего космического корабля, чтобы вернуться на Землю? Радиус Луны 1738 км, а ее масса составляет 1/81 массы Земли.

Роза Мария Рос. «Мир математики» № 30

«Музыка сфер. Астрономия и математика»

Систематизация и структурирование результатов астрономических наблюдений возможны только благодаря математике. Более того, математика сыграла важнейшую роль в развитии астрономии. Однако астрономия имеет свои особенности: вы не можете повторить эксперимент в лаборатории в любое удобное время, изменив то или иное условие. А ведь как прекрасно было бы заказывать затмения по желанию!

Хочу частичное солнечное затмение! Нет, лучше полное!

Астрономия родилась одновременно с человечеством. Телевизора у древнего человека не было, и он наверняка проводил вечера, глядя на звёздное небо. По крайней мере, на небо он смотрел чаще, чем любой из нас. Постепенно наши предки начали понимать, что некоторые астрономические явления повторяются и, наблюдая за ними, можно определить, когда начинать сеять, а когда — отправляться на охоту.

Несомненно, все эти знания помогали людям выживать. Так наука впервые доказала свою полезность. Кроме того, древние люди считали, что те явления, которые они не могут объяснить, происходят по воле Бога. Такие события были сакральными, их связывали с выполнением определённых ритуалов, которые и стали задачей жрецов различных примитивных культов.

Астрономия всегда была близка простым людям, поэтому, возможно, в прошлом она была ближе к человеку, чем сейчас. Мой дед-крестьянин знал то, что сейчас неизвестно большинству городских жителей. К примеру, он рассказывал, что каждую ночь луна восходит на час позже (в действительности на 50 минут, однако подобная точность для крестьянина была несущественной). Моя бабушка знала, что летом солнце стоит выше, чем зимой: его лучи проникали через окно и освещали дальнюю стену комнаты в разное время года по-разному. Интересно, что астрономия больше других наук привлекает любителей во всём мире. Возможно, вызвано это тем, что небо всегда находится у нас над головой, даже в облачный день, а вот, например, любителям-орнитологам надо ехать в какие-то определённые места, что бы наблюдать, как птицы вьют гнёзда. Обилие астрономов-любителей является одной из характерных особенностей данной науки. Благодаря этому распространение новых результатов в астрономии происходит успешно и очень быстро, а некоторым астрономам-любителям удалось добиться больших успехов в изучении небес.

Мне кажется, что распространение результатов астрономических наблюдений происходит проще, чем в других науках, потому что астрономия очень наглядна.

Объяснить последние математические открытия, относящиеся, например, к теории чисел или дифференциальной геометрии, довольно сложно, а продемонстрировать последние снимки, полученные телескопом «Хаббл», нетрудно. Кто из нас, затаив дыхание, не рассматривал фотографии космоса? Более того, астрономия в грамотном изложении по эмоциям и накалу страстей не уступит и сериалу. Кто из нас не удивится, узнав, что звёзды рождаются, стареют и умирают, а некоторые из них ждёт трагическая гибель? Кто не расчувствуется, узнав, что именно внутри звёзд родились самые тяжёлые химические элементы, из которых состоит наше тело? Кто не почувствует себя частью космоса, узнав, что мы — всего лишь дети звёзд, звёздная пыль? Кроме того, во Вселенной движутся и сталкиваются между собой целые галактики. В конечном итоге астрономия — это целый мир, полный прекрасных образов.

Люди хотят узнать об астрономии больше — возможно, потому, что эта наука рассказывает о прошлом, о том, как вращается Земля, о Солнечной системе, о космосе и, следовательно, о нашем доме. И ещё она говорит о том, откуда мы взялись.

Также астрономия позволяет предсказывать смену времён года, затмения, положение планет и звёзд на небе. Этот аспект порой используют псевдоучёные, чтобы предсказать какие-то явления, никак не связанные с расположением небесных тел. Возможно, это является следствием самой природы человека: люди чувствуют неуверенность в будущем и пытаются устранить её любыми способами, например с помощью астрологических прогнозов.

Кстати, если говорить о прогнозах, то между астрономией и математикой существует особая связь, ведь астрономические прогнозы являются результатами математических расчётов. По сути, многие задачи астрономии стало возможным решить благодаря развитию новых разделов математики.

Я ожидаю, что эта книга придётся по душе читателю, и в ней он найдёт ответ на некоторые интересующие его вопросы. Возможно, после чтения у вас возникнут новые идеи — именно таким путём и движется наука. Любой исследователь понимает, что он зажат в рамки: с одной стороны, он испытывает удовольствие от того, что побеждает неподвластную ранее задачу или начинает понимать то, чего раньше не понимал, но, с другой стороны, ему не дают покоя всё новые и новые вопросы.

Я была бы очень рада, если бы читатель получил от этой книги удовольствие сродни исследовательскому. Признаюсь, я работала над ней с наслаждением и надеюсь, что и вы испытаете нечто похожее.

Книга состоит из пяти глав, посвящённых важнейшим темам астрономии, связанным с математикой, — положению планет и измерению времени. В двух первых главах рассказывается об относительном положении небесных тел и расстояниях между ними, в двух последних — об измерении времени. В самой важной, третьей главе, мы поговорим о затмениях — астрономических явлениях, во время которых небесные тела занимают особое положение в пространстве.

Глава 1. Основные углы и расстояния: азбука астрономии

Очевидно, что основной целью науки, посвящённой наблюдению и изучению объектов, является определение их местоположения. В решении этой крайне важной задачи главную роль играет математика, позволяющая вычислить три значения: величины двух углов, указывающих расположение объекта на небесной сфере, и расстояние от объекта до нас. Определить эти два угла сравнительно просто, а вот вычисление расстояний до небесных тел — напротив, одна из сложнейших задач астрономии.

Определение положения по двум углам

Для расчёта положения тела на поверхности Земли используется метод координат. Так как результаты астрономических наблюдений часто зависят от того, где находится наблюдатель, учитывать земные координаты при работе с астрономическими данными крайне важно. Коротко опишем метод расчёта положения небесных тел.

Наша планета вращается вокруг оси, которая обычно используется в качестве линии отсчёта при определении положения точек на поверхности Земли. К примеру, точки пересечения земной оси с поверхностью нашей планеты называются Северным и Южным полюсом. Если мы рассмотрим плоскость, перпендикулярную оси вращения Земли и проходящую через центр нашей планеты, то увидим, что линией пересечения этой плоскости и земной поверхности будет экватор, который делит Землю на два полушария, Северное и Южное (в их вершинах находятся Северный и Южный полюс соответственно). Если теперь мы представим бесконечное число плоскостей, параллельных экватору, и рассечём этими плоскостями поверхность Земли, то получим окружности меньшего размера — параллели.

Теперь представим, что Земля подобна апельсину, разделённому на дольки с помощью линий, проходящих через оба полюса перпендикулярно экватору. Будем называть эти линии меридианами. В отличие от экватора и параллелей, все меридианы имеют равную длину. В 1884 году было принято решение выбрать в качестве нулевого меридиан, проходящий через Гринвичскую обсерваторию близ Лондона. Этот меридиан сохранил свой статус до наших дней, хотя ранее большинство европейских моряков использовали в качестве нулевого меридиан острова Иерро в Канарском архипелаге, точнее меридиан мыса Орчилья на западной оконечности острова. Вызвано это было тем, что со времён Птолемея остров Иерро считался концом известного мира, и до 1492 года о землях, лежащих к западу от острова, ничего не было известно.

Прохождения планет через диск Солнца. — Если бы плоскость орбиты одной из нижних планет (Меркурия и Венеры) совпадала с эклиптикой, то при каждом синодическом обороте (для Венеры 584 дня, для Меркурия 116 дней) планета пересекала бы линию, соединяющую центры Солнца и Земли и была бы видна нам как черный кружок, скользящий по диску Солнца. На самом деле, вследствие наклонности орбит, планета проходит то выше, то ниже Солнца, а П. через диск наблюдается только, если планета в это время находится около восходящего или нисходящего узла своей орбиты. Для разных мест Земли вследствие параллакса (см.) время П. несколько различно. В астрономических календарях даются для разных точек земной поверхности моменты двух внешних касаний (первого и четвертого) дисков Солнца и планеты и двух внутренних (второго и третьего), а также положение точек касаний на окружности солнечного диска (их позиционный угол). П. длится несколько часов (в случае центрального П. Венеры около восьми). В зависимости от отношения величины синодического оборота Венеры к земному году, П. около одного и того же узла повторяются, вообще говоря, через 243 года, но в течение нашего и будущего тысячелетий, вследствие благоприятного расположения орбит Венеры и Земли, каждое П. сопровождается еще через 8 лет другим. В промежутке между такими парами П. в одном узле, происходит пара П. в противоположном узле. Эпоха их отличается на шесть месяцев: мимо нисходящего узла Венеры Земля проходит около 5 июня, мимо восходящего около 8 декабря. Вследствие влияния эксцентриситета земной орбиты от П. в восходящем узле до П. в нисходящем узле протекает больше времени, чем наоборот. Таким образом, полный цикл в 243 года заключает 4 П., разделенные промежутками в 8, 121½, 8 и 105½ лет. Если бы линия узлов оставалась неподвижной, то П. случались бы неизменно в те же числа, но от совокупного влияния прецессии и возмущений других планет долготы узлов Венеры медленно увеличиваются и дни П. в среднем переступают по числам года вперед. Ближайшие к нам П. Венеры:

1631 г. декабрь 7
1639 г. декабрь 4
1761 г. июнь 5
1769 г. июнь 3
1874 г. декабрь 9
1882 г. декабрь 6
2004 г. июнь 8
2012 г. июнь 6
2117 г. декабрь 11
2125 г. декабрь 8

Хотя Венера по своей величине может быть видима на диске Солнца просто глазом, история астрономии не дает никаких точных указаний на подобные наблюдения ранее XVII столетия. П. 1631 года, предсказанное Кеплером, было невидимо в Европе. П. 1639 года, незамеченное Кеплером, вследствие неточности планетных таблиц, было предвычислено гениальным, безвременно погибшим Хорроксом и наблюдалось им и его другом Крабтри в Англии. Вслед за тем Галлей указал, какую важность представляют наблюдения П., произведенные с разных точек Земли, для определения расстояния от Земли до Солнца (см. Параллакс). Он же дал метод точно предвычислять П. Для наблюдения П. 1761 и 1769 годов были посланы многочисленные экспедиции. Оба П. были видимы в Сибири и частью в северной Европейской России: в 1761 г. Шапп наблюдал в Тобольске, академик Румовский в Селенгинске; в 1769 г. Румовский в Коле, Исленьев в Якутске, другие астрономы в Гурьеве, Оренбурге, Орске, Поное и т. д. Окончательная обработка всех наблюдений сделана Энке (1824). Точность наблюдений, состоявших в определении моментов контактов дисков Солнца и Венеры, оказалась гораздо ниже ожидаемой; главной причиной тому служила так называемая черная капля (капля Bailly) — темная полоска, соединяющая диск планеты, уже вступившей на Солнце, с темным пространством неба. Наблюдатели недоумевали, что считать за время действительного контакта — образование капли или разрыв ее. Объяснением явления капли служит иррадиация или, вернее, отсутствие ее в точке касания дисков и недостатки зрительных труб. Перед П. 1874 г. приняты были все меры, чтобы избежать подобных затруднений, так например астрономы практиковались в наблюдения искусственных П. Кроме наблюдений контактов измерялись непрерывно положения Венеры на диске Солнца гелиометрами и с помощью фотографирования. Снаряжены были различными государствами 62 экспедиции, из них 26 русских, расположенных от Египта и границы Персии по Южной Сибири до Тихого океана. Результаты опять получились хуже ожидаемых, и к П. 1882 г. готовились уже с меньшим энтузиазмом. Многие наблюдатели заметили, что планета, отчасти вследствие освещения Солнцем ее атмосферы, отчасти вследствие яркости хромосферы и нижних частей короны Солнца, может быть видима даже вне диска Солнца. Это обстоятельство тоже очень вредит точности наблюдения контактов.

П. Меркурия случаются гораздо чаще, притом в менее характерные промежутки времени. Вследствие большого (в противоположность Венере) эксцентриситета орбиты Меркурия, ноябрьские его П., в восходящем узле, близ которого расположен перигелий планеты, т. е., когда планета значительно ближе к Солнцу, происходят вдвое чаще, чем майские — в нисходящем узле. По причине малости параллакса Меркурия его П. не имеют того же значения, как П. Венеры. Они важны только для изучения орбиты планеты. Леверрье из разбора наблюдений П. Меркурия вывел до сих пор необъясненное теорией вековое движение его перигелия (см. Перигелий). Первое наблюдение П. Меркурия сделано Гассенди 7 ноября 1631 г. на основании предвычисления Кеплера. Последние три П. были 7 ноября 1881 г., 9 мая 1891 г. и 10 ноября 1894 г. Следующее будет 4 ноября 1901 г.

Много раз (обыкновенно случайными наблюдателями, не специалистами) замечены были темные пятнышки на диске Солнца, по разным признакам похожие не на солнечные пятна в узком смысле, а на Меркурий или Венеру при их П. Эти явления пытались объяснить существованием особой интрамеркуриальной планеты, уже заранее названной Вулканом. Леверрье указал на неувязку в движении перигелия Меркурия, как на теоретическое подтверждение этой гипотезы (см. Перигелий, Солнечная система, Вулкан). Но, безусловно, все подобные наблюдения или сомнительны (из них самое известное — доктора Лескарбо 26 марта 1859 г. в Оржере, Франция), или должны быть отнесены к простым солнечным пятнам.

Меркурий и Венера являются внутренними планетами, и только для них возможно существование еще ​​одного события, описываемого теорией затмений : прохождение планеты по диску Солнца. Фактически это затмение Солнца планетой. Однако из-за их небольшой видимый размер с обычным затемнением прохождения спутать трудно. Прохождение планет происходят значительно реже, чем даже полные солнечные затмения, однако наблюдать их можно на всей дневной полушарии Земли.

Как бы вам не казалось, что прохождение Меркурия очень редкими, все же прохождение Венеры по диску Солнца происходят еще реже. Так, последнее прохождения произошло в далеком декабре 1882! Закономерность повторения прохождений тоже есть сложнее : они повторяются через 121,5 ; 8 ; 105,5 ; а потом опять через 8 лет. Круг восстанавливается. Таким образом, ближайшее прохождения Венеры по диску Солнца состоялось 8 июня 2004 года было благоприятным для наблюдений на территории Украины. Следующего придется ждать до 6 июня 2012 года, однако оно не будет наблюдаться в Украине полностью. Затем «отдых» продлится до 2117!

Для Меркурия такие явления нехарактерны из-за того, что его атмосфера очень разрежена. Однако существуют свидетельства о различных нестационарные явления, наблюдавшиеся при прохождении Меркурия по диску Солнца. Так, некоторые наблюдатели отмечают, что видели Меркурий на фоне неба за несколько минут до его контакта с солнечным диском. Также нередки свидетельство об образовании яркого ореола вокруг планеты. Возможно, это отчасти объясняется тем, что диск планеты попал на солнечный протуберанец. Однако наверняка выявить причину таких нетипичных картин не удалось. Вроде так называемых «краткосрочных месячных явлений» подобные свидетельства зачастую не обоснованы и остаются под вопросом.

Читайте также: