Vector at c описание

Обновлено: 05.07.2024

Vectors are sequence containers representing arrays that can change in size.

Just like arrays, vectors use contiguous storage locations for their elements, which means that their elements can also be accessed using offsets on regular pointers to its elements, and just as efficiently as in arrays. But unlike arrays, their size can change dynamically, with their storage being handled automatically by the container.

Internally, vectors use a dynamically allocated array to store their elements. This array may need to be reallocated in order to grow in size when new elements are inserted, which implies allocating a new array and moving all elements to it. This is a relatively expensive task in terms of processing time, and thus, vectors do not reallocate each time an element is added to the container.

Instead, vector containers may allocate some extra storage to accommodate for possible growth, and thus the container may have an actual capacity greater than the storage strictly needed to contain its elements (i.e., its size). Libraries can implement different strategies for growth to balance between memory usage and reallocations, but in any case, reallocations should only happen at logarithmically growing intervals of size so that the insertion of individual elements at the end of the vector can be provided with amortized constant time complexity (see push_back).

Therefore, compared to arrays, vectors consume more memory in exchange for the ability to manage storage and grow dynamically in an efficient way.

Compared to the other dynamic sequence containers (deques, lists and forward_lists), vectors are very efficient accessing its elements (just like arrays) and relatively efficient adding or removing elements from its end. For operations that involve inserting or removing elements at positions other than the end, they perform worse than the others, and have less consistent iterators and references than lists and forward_lists.

Returns a reference to the element at position n in the vector container.

A similar member function, vector::at, has the same behavior as this operator function, except that vector::at is bound-checked and signals if the requested position is out of range by throwing an out_of_range exception.

Portable programs should never call this function with an argument n that is out of range, since this causes undefined behavior.

Класс и объекты

Класс — это набор переменных и функций, которые работают вместе, где переменным не присвоены значения. Когда переменным присваиваются значения, класс становится объектом. Различные значения, присвоенные одному и тому же классу, приводят к разным объектам; то есть разные объекты могут принадлежать к одному классу, но иметь разные значения. Создание объекта из класса также известно как создание экземпляра объекта.

Термин вектор описывает класс. Объект, созданный из вектора, имеет имя, выбранное программистом.

Функция, принадлежащая классу, необходима для создания экземпляра объекта из класса. В C ++ эта функция имеет то же имя, что и имя класса. Различные объекты, созданные (экземпляры) из класса, имеют разные имена, данные каждому из них программистом.

Создание объекта из класса означает создание объекта; это также означает создание экземпляра объекта.

Класс Vector

Векторный класс уже определен и находится в библиотеке. Чтобы использовать векторный класс, программист должен включить векторный заголовок в файл со следующей директивой предварительной обработки:

После включения заголовка становятся доступными все векторные функции (элементы данных и функции-члены). Чтобы использовать объект счетчика для вывода данных на терминал (консоль), также должен быть включен заголовок объекта. Чтобы написать программу с вектором, как минимум должны быть включены следующие заголовки:

Емкость вектора

size_type capacity () const noexcept

Общее количество элементов, которые вектор может содержать без перераспределения, возвращается функцией-членом емкости. Сегмент кода для этого выглядит следующим образом:

reserve(n)

Пространство памяти не всегда доступно. Дополнительное место можно зарезервировать заранее. Рассмотрим следующий фрагмент кода:

Результатом будет 6. Таким образом, зарезервировано дополнительное пространство 6 — 4 = 2 элемента. Функция возвращает void.

size () const noexcept

Это возвращает количество элементов в векторе. Следующий код иллюстрирует эту функцию:

shrink_to_fit()

После предоставления дополнительной емкости вектору с помощью функции reserve () размер вектора можно уменьшить, чтобы он соответствовал его исходному размеру. Следующий код иллюстрирует это:

На выходе будет 4, а не 6. Функция возвращает void.

resize(sz), resize(sz,c)

Это изменяет размер вектора. Если новый размер меньше старого, то элементы ближе к концу стираются. Если новый размер больше, то ближе к концу добавляется какое-то значение по умолчанию. Чтобы добавить определенную ценность, используйте функцию resize () с двумя аргументами. Следующий фрагмент кода иллюстрирует использование этих двух функций:

New size of vtr1: 2
vtr2: 1.1 2.2 8.8 8.8

Функции возвращают void.

empty() const noexcept

Эта функция возвращает 1 для истины, если в векторе нет элементов, и 0 для false, если вектор пуст. Если вектор имеет 4 местоположения для определенного типа данных, например, с плавающей запятой, без какого-либо значения с плавающей запятой, то этот вектор не является пустым. Следующий код иллюстрирует это:

Доступ к элементу вектора

Вектор может быть подписан (проиндексирован) как массив. Подсчет индекса начинается с нуля.

vectorName[i]

Операция «vectorName [i]» возвращает ссылку на элемент в i- м индексе вектора. Следующий код выводит 3.3 для указанного выше вектора:

vectorName [i] const

Операция «vectorName [i] const» выполняется вместо «vectorName [i]», когда вектор является постоянным вектором. Эта операция используется в следующем коде:

Выражение возвращает постоянную ссылку на i- й элемент вектора.

Уничтожение вектора

Чтобы уничтожить вектор, просто позвольте ему выйти из области видимости, и уничтожение будет выполнено автоматически.

Пример 4: значение поиска на основе условий в векторе

Способ определения из вектора значений, которые делятся на 5 и 3, показан в следующем примере. Пять целочисленных значений будут взяты у пользователя и вставлены в пустой вектор с помощью функции push_back (). После вставки каждое значение вектора будет разделено на 3 и 5. Если значения остатка обоих делений равны нулю, то это значение вектора будет напечатано.

Следующий вывод появится после выполнения вышеуказанного кода для входных значений 5, 9, 15, 8 и 45. Здесь 15 и 45 делятся на 3 и 5.

Конструирование с инициализацией

Вектор может быть сконструирован (создан) и инициализирован одновременно одним из следующих двух способов:

Обратите внимание, что сразу после имени объекта скобок нет. Круглые скобки, используемые сразу после имени объекта, должны содержать список инициализаторов, как показано ниже:

Вектор может быть создан и инициализирован позже с помощью списка инициализаторов. В этом случае круглые скобки использоваться не будут:

Это конструктор копирования. Он создает вектор V2 как копию вектора V1. Следующий код иллюстрирует это:

Возвращение итераторов и вектора

Итератор похож на указатель, но имеет больше функций, чем указатель.

begin() noexcept

Возвращает итератор, указывающий на первый элемент вектора, как в следующем сегменте кода:

На выходе получается 1.1. Обратите внимание, что объявление, которое получает итератор, было объявлено. Итератор разыменовывается в возвращаемом выражении для получения значения так же, как разыменование указателя.

begin () const noexcept;

Возвращает итератор, указывающий на первый элемент вектора. Когда конструкции вектора предшествует константа, выражение «begin () const» выполняется вместо «begin ()». При этом условии соответствующий элемент в векторе не может быть изменен. Это используется в следующем коде:

На выходе получается 1.1. Обратите внимание, что на этот раз был использован «const_iterator» вместо простого «итератора» для получения возвращенного итератора.

end() noexcept

Возвращает итератор, который указывает сразу за последним элементом вектора. Рассмотрим следующий фрагмент кода:

Результатом будет 0, что бессмысленно, поскольку за последним элементом нет конкретного элемента.

end() const noexcept

Возвращает итератор, который указывает сразу за последним элементом вектора. Когда конструкции вектора предшествует «const», выражение «end () const» выполняется вместо «end ()». Рассмотрим следующий фрагмент кода:

Результатом будет 0. Обратите внимание, что на этот раз был использован «const_iterator» вместо простого «итератора» для получения возвращенного итератора.

Назначение вектора во время Construction

Во время построения может быть создан пустой вектор, в то время как ему назначен другой, следующим образом:

Второй оператор эквивалентен:

Обратная итерация

Возможно иметь итератор, который выполняет итерацию от конца до самого первого элемента.

rbegin() noexcept

Возвращает итератор, указывающий на последний элемент вектора, как в следующем сегменте кода:

Обратите внимание, что объявлено объявление, получающее обратный итератор. Итератор разыменовывается в возвращаемом выражении для получения значения так же, как разыменование указателя.

rbegin () const noexcept;

Возвращает итератор, указывающий на последний элемент вектора. Когда конструкции вектора предшествует «const», выражение «rbegin () const» выполняется вместо «rbegin ()». При этом условии соответствующий элемент в векторе не может быть изменен. Эта функция используется в следующем коде:

Обратите внимание, что на этот раз был использован const_reverse_iterator вместо только reverse_iterator для получения возвращенного итератора.

rend () noexcept

Возвращает итератор, который указывает непосредственно перед первым элементом вектора. Рассмотрим следующий фрагмент кода:

Результатом будет 0, что не имеет смысла, поскольку непосредственно перед первым элементом нет конкретного элемента.

rend () const noexcept

Возвращает итератор, который указывает непосредственно перед первым элементом вектора. Когда конструкции вектора предшествует «const», выражение «rend () const» выполняется вместо «rend ()». Рассмотрим следующий фрагмент кода:

Обратите внимание, что на этот раз был использован const_reverse_iterator вместо только reverse_iterator для получения возвращенного итератора.

Создание экземпляра вектора

Выше объявление массива с именем «foo» и количеством элементов «10». Это массив целых чисел. Объявление вектора аналогично. Для вектора количество элементов не является обязательным, поскольку длина вектора может увеличиваться или уменьшаться.

На этом этапе программы векторный класс уже определен в библиотеке, и заголовок включен. Вектор может быть создан следующим образом:

Здесь вектор принадлежит специальной функции-конструктору. Тип данных, которые будет содержать вектор, — это «int» в угловых скобках. Термин «vtr» — это имя, выбранное программистом для вектора. Наконец, «8» в скобках — это ориентировочное количество целых чисел, которые будет иметь вектор.

Термин «std» означает стандартное пространство имен. В этом контексте после этого термина должно стоять двойное двоеточие. Кто угодно может написать свою собственную библиотеку векторных классов и использовать ее. Однако в C ++ уже есть стандартная библиотека со стандартными именами, включая «вектор». Чтобы использовать стандартное имя, стандартному имени должен предшествовать std . Чтобы не вводить std :: каждый раз в программе для стандартного имени, файл программы может запускаться следующим образом:

Построение вектора

Построение вектора означает инстанцирование (создание) векторного объекта. Функция-конструктор перегружается следующим образом:

vector <T> name

Это создает вектор нулевой длины и набирает «T.» Следующая инструкция создает вектор нулевой длины типа «float» с именем «vtr»:

vector <T> name (n)

Это создает вектор с n элементами типа «T.» Утверждение для этого вектора с четырьмя элементами с плавающей запятой выглядит следующим образом:

vector <T> name (n, t)

Это создает вектор из n элементов, инициализированных значением t. Следующий оператор создает вектор из 5 элементов, каждый из которых имеет значение 3,4:

Операторы равенства и отношения для векторов

The == Operator

Возвращает 1 для истины, если два вектора имеют одинаковый размер и соответствующие элементы равны; в противном случае он возвращает 0 для ложного. Например:

The != Operator

Возвращает 1 для истины, если два вектора не имеют одинакового размера и / или соответствующие элементы не равны; в противном случае он возвращает 0 для ложного. Например:

The < Operator

Возвращает 1 для истины, если первый вектор является начальным подмножеством второго вектора, причем элементы двух равных частей одинаковы и находятся в одном порядке. Если оба вектора имеют одинаковый размер и движутся слева направо, и в первом векторе встречается элемент, который меньше соответствующего элемента во втором векторе, то все равно будет возвращено 1. В противном случае возвращается 0 для false. Например:

Вывод 1. <не включает случай, когда размер и порядок совпадают.

The > Operator

The <= Operator

The >= Operator

Возвращает! (U <= V), где U — первый вектор, а V — второй вектор, согласно приведенным выше определениям.

Заключение

Различные варианты использования функции at () в векторе C ++ были описаны в этом руководстве на нескольких примерах. Функцию at () также можно использовать для строкового типа данных. Я надеюсь, что читатель сможет использовать эту функцию в векторе для различных целей после прочтения этого руководства.

Как использовать вектор (vecto) в C++

Программирование и разработка

Как использовать вектор (vecto) в C++

Массив — это серия объектов одного и того же типа в последовательных ячейках памяти. Массив не может увеличить длину руды. Вектор похож на массив, но его длина может быть увеличена или уменьшена. Следовательно, вектор имеет гораздо больше операций, чем массив.

C ++ имеет множество библиотек, все из которых составляют стандартную библиотеку C ++. Одна из этих библиотек — это библиотека контейнеров. Контейнер — это набор объектов, и с этой коллекцией можно выполнять определенные операции. Контейнеры C ++ можно сгруппировать в два набора: контейнеры последовательности и ассоциативные контейнеры. Контейнеры последовательности — это vector, array (не тот массив, который обсуждался ранее), deque, forward_list и list. Это разные коллекции (структуры данных, подобные массивам), и каждая предлагает различные компромиссы.

Любой программист должен знать, как решить, использовать ли вектор, массив, двухстороннюю очередь, forward_list или список. Когда программисту нужна структура, которая требует больше операций, чем те, которые связаны с обычным массивом, обычный массив использовать не следует.

Если задача включает частые вставки и удаления в середине последовательности, следует использовать список или forward_list. Если задача включает частые вставки и удаления в начале или конце последовательности, следует использовать двухстороннюю очередь. Вектор следует использовать, когда такого рода операции не требуются.

В этой статье показано, как использовать вектор C ++. Для понимания этой статьи вам потребуются некоторые знания указателей, ссылок и массивов C ++.

Пример 3: поиск определенного значения в векторе

В следующем примере показан способ поиска определенного значения в векторе с помощью функции at (). Как и в предыдущем примере, в коде использовался вектор из 10 целых чисел. Значения вектора были напечатаны с использованием цикла for и функции at ().

Значение поиска будет взято у пользователя. Другой «для» петли используется для поиска значения ввода в вектор и установить значение переменного, нашел, чтобы быть истинным, если значение входного сигнала существует в векторе.

Другой «для» петли используется для поиска значения ввода в вектор и установить

Заключение

Вектор — это пример контейнера последовательности. Вектор является «лучшей» формой обычного массива и создается из класса. У векторов есть методы, которые классифицируются по следующим категориям: построение и присвоение, емкость, доступ к элементам, доступ к данным, итераторы, модификаторы и числовые перегруженные операторы.

Существуют и другие контейнеры последовательности, называемые списком, forward_list и массивом. Если задача включает частые вставки и удаления в середине последовательности, следует использовать список или forward_list. Если задача включает частые вставки и удаления в начале или конце последовательности, следует использовать двухстороннюю очередь. Итак, векторы следует использовать только тогда, когда такого рода операции не важны.е важны.

Присвоение значения с помощью нижнего индекса

Значение может быть присвоено непостоянному вектору следующим образом:

На выходе получается 8.8.

vectorName.at (i)

«VectorName.at (i)» похож на «vectorName [i]», но «vectorName.at (i)» более надежен. Следующий код показывает, как следует использовать этот вектор:

vectorName.at (i) const

«VectorName.at (i) const» похоже на «vectorName [i] const», но «vectorName.at (i) const» более надежен. «VectorName.at (i) const» выполняется вместо «vectorName.at (i)», когда вектор является постоянным вектором. Этот вектор используется в следующем коде:

Конструирование с помощью Iterator

Шаблон предоставляет общее представление для типа данных. Итератор обеспечивает общее представление сканирования значений контейнера. Синтаксис для создания вектора с итератором следующий:

template < class InputIterator >
vector ( InputIterator first , InputIterator last , const Allocator & = Allocator ( ) ) ;

Это создает вектор для диапазона [первый, последний) с использованием указанного распределителя, который будет обсуждаться позже в этой статье.

Векторные модификаторы

Модификатор, изменяющий вектор, может принимать или возвращать итератор.

a.emplace (p, args)

insert(iteratorPosition, value)

Вставляет копию значения в позицию итератора вектора. Возвращает итератор (позицию) в векторе, куда была помещена копия. Следующий код показывает, где было размещено значение:

Обратите внимание, что итератор был расширен (увеличен) точно так же, как указатель.

Также можно вставить список инициализаторов, как показано в следующем коде:

Вывод: 20 25 28 30.

erase(position)

Удаляет элемент в позиции, на которую указывает итератор, затем возвращает позицию итератора. Следующий код иллюстрирует это:

push_back(t), push_back(rv)

Используется для добавления одного элемента в конец вектора. Используйте push_back (t) следующим образом:

pop_back()

Удаляет последний элемент, не возвращая его. Размер вектора уменьшается на 1. Следующий код иллюстрирует это:

a.swap(b)

Два вектора можно поменять местами, как показано в следующем фрагменте кода:

Обратите внимание, что длина вектора при необходимости увеличивается. Кроме того, значения, для которых не было замен, заменяются некоторым значением по умолчанию.

clear()

Удаляет все элементы из вектора, как показано в следующем сегменте кода:

Parameters

n Position of an element in the container.
Notice that the first element has a position of 0 (not 1).
Member type size_type is an unsigned integral type.

Return value

The element at the specified position in the vector.

If the vector object is const-qualified, the function returns a const_reference. Otherwise, it returns a reference.

Member types reference and const_reference are the reference types to the elements of the container (see vector member types).

Использование функции Vector Pop_Back () в C++

Программирование и разработка

Вектор используется в C ++ для создания динамического массива, и размер вектора может быть изменен путем добавления или удаления элементов. В точке () функция вектора используется для доступа к элементу конкретного положения, которое существует в векторе. Выдает исключение, если значение позиции недействительно. В этом руководстве показано использование функции at () в векторе C ++.

Синтаксис :

Синтаксис этой функции приведен ниже. Эта функция принимает конкретную позицию в качестве значения аргумента и возвращает значение этой позиции, если значение позиции существует.

Пример 1: чтение каждого элемента вектора

Способ печати каждого элемента вектора с помощью функции at () показан в следующем примере. В коде определен вектор строковых значений.

Цикл for был использован для итерации вектора на основе размера вектора и печати каждого значения вектора в каждой строке с помощью функции at (). Функция size () использовалась для подсчета общего количества элементов вектора.

Следующий вывод появится после выполнения вышеуказанного кода. В векторе есть 3 элемента, которые были напечатаны на выходе.

Цикл for был использован для итерации вектора на основе размера

Доступ к векторным данным

data() noexcept; data() const noexcept;

Подробнее об этом будет рассказано позже в статье.

Присвоение значения с помощью функции at ()

Значение может быть присвоено непостоянному вектору с помощью функции at () следующим образом:

На выходе получается 8.8.

Проблема с подпрограммами

Проблема с дополнительными сценариями (индексированием) заключается в том, что если индекс выходит за пределы допустимого диапазона, может быть возвращен ноль или может возникнуть ошибка во время выполнения.

front()

Это возвращает ссылку на первый элемент вектора без удаления элемента. Результатом следующего кода является 1.1.

Элемент не удаляется из вектора.

front() const

Когда конструкции вектора предшествует const, выражение «front () const» выполняется вместо «front ()». Это используется в следующем коде:

Возвращается постоянная ссылка. Элемент не удаляется из вектора.

back()

Это возвращает ссылку на последний элемент вектора без удаления элемента. Вывод следующего кода — 4.4.

back() const

Когда конструкции вектора предшествует const, выражение «back () const» выполняется вместо «back ()». Это используется в следующем коде:

Возвращается постоянная ссылка. Элемент не удаляется из вектора.

Перегрузка функции

Когда две или более разных сигнатур функций имеют одно и то же имя, это имя считается перегруженным. Когда вызывается одна функция, количество и тип аргументов определяют, какая функция выполняется.

Пример 2: вычислить сумму значений вектора

Способ вычисления суммы всех значений вектора, содержащего целые числа, показан в следующем примере. В коде объявлен вектор из 10 целых чисел. Первый цикл for использовался для печати значений вектора, а второй цикл for был использован для вычисления суммы всех значений вектора. Далее распечатан результат суммирования.

Следующий вывод появится после выполнения вышеуказанного кода. Сумма всех значений (7 + 4 + 9 + 2 + 1 + 0 + 8 +3 +5 + 6) составляет 45, которые были напечатаны на выходе.

Способ вычисления суммы всех значений вектора, содержащего целые числа, показан в следующем примере

const Vector

Константный вектор — это вектор, элементы которого нельзя изменить. Значения в этом векторе доступны только для чтения. При создании вектор выглядит следующим образом:

В этом векторном типе ни один элемент не может быть добавлен или удален. Более того, никакое значение не может быть изменено.

Читайте также: