Сравнение phenom ii x4

Обновлено: 02.07.2024

С момента появления на рынке процессоров Phenom II X4 многих пользователей интересует вопрос их производительности относительно сопоставимых по цене четырехъядерных процессоров Intel Core 2 Quad. В данном материале будет рассмотрен этот актуальный по сей день вопрос.

Героями обзора стали процессоры Phenom II X4 965 BE и Phenom II X4 810, обладающие схожими техническими характеристиками (за исключением тактовой частоты). Разница между ними заключается в разном объеме L3 кэша: у Phenom II X4 965 BE он составляет 6 Мбайт, у Phenom II X4 810 - 4 Мбайта. Кроме того, у старшей модели разблокированный множитель, а у младшей он фиксированный.

При подборке соперников из конкурирующего лагеря выбор пал на более-менее равные по ценам процессоры Core 2 Quad Q9500, Core 2 Quad Q8400, Core 2 Duo E8400. Из собратьев в тестировании примут участие Phenom II X3 720 и Phenom II X2 555 BE с целью всесторонне рассмотреть производительность практически всей линейки CPU Phenom II.

реклама
  • Phenom II X4 965 BE - 3400 @ 4000 МГц
  • Phenom II X4 810 - 2600 @ 3600 МГц
  • Phenom II X3 720 - 2800 @ 3700 МГц
  • Phenom II X2 555 BE - 3200 @ 4000 МГц
  • Core 2 Quad Q9500 - 2830 @ 3800 МГц
  • Core 2 Quad Q8400 - 2660 @ 3500 МГц
  • Core 2 Duo E8400 - 3000 @ 4200 МГц

Остальные компоненты:

  • Видеокарта:GeForce GTX 480 1536 Мбайт - 700/1400/3696 МГц (Palit)
  • Система охлаждения CPU: Cooler Master V8 (

Программное обеспечение:

  • Операционная система: Windows 7 build 7600 RTM x64
  • Драйверы видеокарты: GeForce 260.89 WHQL

Для более наглядного сравнения процессоров все игры, используемые в качестве тестовых приложений, запускались в разрешениях 1280х1024 и 1920х1080.

В следующих играх использовались средства измерения быстродействия (бенчмарки):

  • ARMA 2 (Бенчмарк №1)
  • Colin McRae DIRT 2 (Битва Battersea - Лондон)
  • Formula 1 2010 (Бенчмарк)
  • Grand Theft Auto 4 EFLC (Потерянные и Проклятые)
  • Lost Planet Colonies (Зона 1)
  • Mafia 2 (Бенчмарк)
  • R.U.S.E. (Бенчмарк)
  • World in Conflict: Soviet Assault (Побережье)

В данных играх производительность измерялась с помощью утилит FRAPS v3.2.1 build 11425 и AutoHotkey v1.0.48.05:

Во всех играх замерялись минимальные и средние значения FPS.

В тестах, в которых отсутствовала возможность замера минимального FPS, это значение измерялось утилитой FRAPS.

VSync при проведении тестов был отключен.

Чтобы избежать ошибок и минимизировать погрешности измерений, все тесты производились по три - пять раз. При вычислении среднего FPS за итоговый результат бралось среднеарифметическое значение результатов всех прогонов (трех не "холостых"). В качестве минимального FPS выбиралось минимальное значение показателя по результатам трех прогонов.

Технические характеристики процессоров Intel


реклама

Технические характеристики процессоров AMD


Процессоры разгонялись следующим образом. Стабильность разгона проверялась утилитой ОССТ 3.1.0 "Perestroika" путем получасового прогона процессора на максимальной матрице с принудительной 100% нагрузкой. Соглашусь с тем, что разгон тестируемых процессоров не является абсолютно стабильным, но для любой современной игры он подходит на все сто.

Core 2 Quad Q9500

реклама

Штатный режим. Тактовая частота 2830 МГц, частота системной шины 333 МГц (333х8.5), частота DDR2 - 1066 МГц (333х3.2), напряжение питания ядра 1.29 В, напряжение питания DDR2 - 2.1 В.

3400 МГц - частота системной шины 400 МГц (400х8.5), частота DDR2 - 1064 МГц (400х2.66), напряжение питания ядра 1.29 В, напряжение питания DDR2 - 2.1 В.

Процессор удалось разогнать до частоты 3800 МГц. Для этого частота системной шины была поднята до 447 МГц (447х8.5), напряжение питания ядра - до 1.45 В, напряжение питания DDR2 - 2.1 В, напряжение питания системной шины - на 0.2 В, напряжение северного моста - на 0.1 В. Частота DDR2 составила 1073 МГц (447х2.4).

Core 2 Quad Q8400

Штатный режим. Тактовая частота 2660 МГц, частота системной шины 333 МГц (333х8), частота DDR2 - 1066 МГц (333х3.2), напряжение питания ядра 1.29 В, напряжение питания DDR2 - 2.1 В.

реклама

3400 МГц - частота системной шины 425 МГц (425х8), частота DDR2 - 1063 МГц (425х2.5), напряжение питания ядра 1.45 В, напряжение питания DDR2 - 2.1 В.

Процессор удалось разогнать до частоты 3500 МГц. Для этого частота системной шины была поднята до 438 МГц (438х8), напряжение питания ядра - до 1.45 В, напряжение питания DDR2 - 2.1 В, напряжение питания системной шины - на 0.2 В, напряжение северного моста - на 0.1 В. Частота DDR2 составила 1051 МГц (438х2.4).

Core 2 Duo E8400

Штатный режим. Тактовая частота 3000 МГц, частота системной шины 333 МГц (333х9), частота DDR2 - 1066 МГц (333х3.2), напряжение питания ядра 1.275 В, напряжение питания DDR2 - 2.1 В.

3400 МГц - частота системной шины 378 МГц (378х9), частота DDR2 - 1006 МГц (378х2.66), напряжение питания ядра 1.275 В, напряжение питания DDR2 - 2.1 В.

реклама

Процессор удалось разогнать до частоты 4200 МГц. Для этого частота системной шины была поднята до 467 МГц (467х9), напряжение питания ядра - до 1.45 В, напряжение питания DDR2 - 2.1 В, напряжение питания системной шины - на 0.2 В, напряжение северного моста - на 0.1 В. Частота DDR2 составила 1121 МГц (467х2.4).

Phenom II X4 965 BE

Штатный режим. Тактовая частота 3400 МГц, частота системной шины 200 МГц (200х17), частота контроллера памяти 2000 МГц (200х10), частота DDR3 - 1333 МГц (200х6.66), напряжение питания ядра 1.38 В, напряжение питания DDR3 - 1.65 В.

Процессор удалось разогнать до частоты 4000 МГц. Для этого частота шины была поднята до 235 МГц (235х17), контроллера памяти до 2585 МГц (235х11), напряжение питания ядра - до 1.55 В, напряжение питания DDR3 - 1.65 В, напряжение северного моста - на 0.1 В. Частота DDR3 составила 1565 МГц (235х6.66).

Phenom II X4 810

реклама

Штатный режим. Тактовая частота 2600 МГц, частота системной шины 200 МГц (200х13), частота контроллера памяти 2000 МГц (200х10), частота DDR3 - 1333 МГц (200х6.66), напряжение питания ядра 1.3 В, напряжение питания DDR3 - 1.65 В.

3400 МГц - частота шины 262 МГц (262х13), частота контроллера памяти 2620 МГц (262х10), частота DDR3 - 1745 МГц (262х6.66), напряжение питания ядра 1.48 В, напряжение питания DDR3 - 1.65 В.

Процессор удалось разогнать до частоты 3600 МГц. Для этого частота шины была поднята до 277 МГц (277х13), контроллера памяти до 2770 МГц (277х10), напряжение питания ядра - до 1.52 В, напряжение питания DDR3 - 1.65 В, напряжение северного моста - на 0.1 В. Частота DDR3 составила 1845 МГц (277х6.66).

Phenom II X3 720

Штатный режим. Тактовая частота 2800 МГц, частота системной шины 200 МГц (200х14), частота контроллера памяти 2000 МГц (200х10), частота DDR3 - 1333 МГц (200х6.66), напряжение питания ядра 1.31 В, напряжение питания DDR3 - 1.65 В.

реклама

3400 МГц - частота шины 242 МГц (242х14), частота контроллера памяти 2420 МГц (242х10), частота DDR3 - 1612 МГц (242х6.66), напряжение питания ядра 1.38 В, напряжение питания DDR3 - 1.65 В.

Процессор удалось разогнать до частоты 3700 МГц. Для этого частота шины была поднята до 265 МГц (265х14), контроллера памяти до 2650 МГц (265х10), напряжение питания ядра - до 1.53 В, напряжение питания DDR3 - 1.65 В, напряжение северного моста - на 0.1 В. Частота DDR3 составила 1766 МГц (265х6.66).

Phenom II X2 555 BE

Штатный режим. Тактовая частота 3200 МГц, частота системной шины 200 МГц (200х16), частота контроллера памяти 2000 МГц (200х10), частота DDR3 - 1333 МГц (200х6.66), напряжение питания ядра 1.31 В, напряжение питания DDR3 - 1.65 В.

3400 МГц - частота шины 213 МГц (213х16), частота контроллера памяти 2130 МГц (213х10), частота DDR3 - 1418 МГц (213х6.66), напряжение питания ядра 1.31 В, напряжение питания DDR3 - 1.65 В.

Процессор удалось разогнать до частоты 4000 МГц. Для этого частота шины была поднята до 250 МГц (250х16), контроллера памяти до 2500 МГц (250х10), напряжение питания ядра - до 1.53 В, напряжение питания DDR3 - 1.65 В, напряжение северного моста - на 0.1 В. Частота DDR3 составила 1665 МГц (250х6.66).

Перейду непосредственно к тестам.

  • Версия 1.1
  • DirectX 9
    • качество текстур - высоко
    • качество SSAO - высоко
    • качество света - высоко
    • качество теней - ультра
    • динамические тени - мир и геометрия
    • тени - мир и геометрия
    • качество персонажей - высоко
    • качество мира - высоко
    • качество частиц - высоко
    • экспозиция - вкл.
    • блики - вкл.
    • детализация лиц - вкл.
    • постобработка - вкл.

    1280 х 1024

    Включите JavaScript, чтобы видеть графики

    1920 х 1080

    Включите JavaScript, чтобы видеть графики
    минимальный и средний FPS

    В игре Arcania - Gothic 4 уже в номинальном режиме работы Phenom II X4 965 BE и Phenom II X4 810 уверенно заняли лидирущие позиции, а после повышения частот всех процессоров смогли их удержать. Примечательно, что разница в результатах данных CPU на равной частоте 3400 МГц составила незначительные 2-6%. Стоит отметить, что после разгона при меньшей тактовой частоте Phenom II X4 810 ни в чем не уступил Core 2 Quad Q9500, не говоря уж о прямом конкуренте Core 2 Quad Q8400.

    • Версия 1.05.62017
    • DirectX 9
      • полноэкранное сглаживание (AA) 4
      • анизотропная фильтрация (AF) 16
      • дистанция обзора - максимальная
      • качество текстур - очень высокое
      • размер теней - 4096
      • качество ландшафта - очень высокое
      • качество объектов - очень высокое
      • качество теней - очень высокое
      • постобработка - очень высокая

      1280 х 1024

      Включите JavaScript, чтобы видеть графики

      1920 х 1080

      Включите JavaScript, чтобы видеть графики
      минимальный и средний FPS

      В ARMA 2 оба четырехъядерных процессора ушли в заметный отрыв от конкурирующих решений Intel, причем Phenom II X4 810, работающий на штатных частотах, смог соперничать с разогнанными Core 2 Quad Q9500, Core 2 Quad Q8400 и Core 2 Duo E8400.

      Несмотря на это игра, настолько требовательна к мощности процессоров, что даже разогнанные лидеры не смогли обеспечить комфортную производительность. Разница в результатах между Phenom II X4 965 BE и Phenom II X4 810 составила 2% - 4%.


      В таблицу можно добавить не более 6 процессоров (кнопка "Добавить процессор"). Для ускорения поиска интересующего процессора пользуйтесь фильтром.

      Процессоры в таблице можно менять местами, перетаскивая их в нужное место с помощью мышки. "Ухватить" процессор для перетаскивания можно за ячейку с его названием (верхняя ячейка столбца). В этой же ячейке расположена кнопка для удаления процессора из таблицы ("крестик" в верхнем правом углу).

      Содержание таблицы можно настраивать, скрывая / добавляя необходимые строки. Кнопка настройки расположена в верхней ячейке первого столбца таблицы.

      После выбора процессоров под таблицей отображается общий рейтинг их быстродействия, результаты тестирования в синтетических тестах (PassMark, Geekbench 4, Cinebench R11.5, Cinebench R15 и др), а также уровень быстродействия их встроенных графических чипов (если они есть).

      Если в базе сайта отсутствует результат тестирования процессора в определенном бенчмарке, для него отображается предполагаемый показатель, автоматически подсчитываемый системой путем анализа быстродействия процессоров с аналогичными характеристиками.

      Предполагаемые результаты визуально отличаются от реальных (серый цвет анаграммы, перед результатом стоит значок "


      Тесты AMD Phenom II X4 970 против AMD Phenom II X4 955

      Скорость в играх

      Производительность в играх и подобных приложениях, согласно нашим тестам.

      Наибольшее влияние на результат оказывает производительность 4 ядер, если они есть, и производительность на 1 ядро, поскольку большинство игр полноценно используют не более 4 ядер.

      Также важна скорость кэшей и работы с оперативной памятью.

      Скорость в офисном использовании

      Производительность в повседневной работе, например, браузерах и офисных программах.

      Наибольшее влияние на результат оказывает производительность 1 ядра, поскольку большинство подобных приложений использует лишь одно, игнорируя остальные.

      Аналогичным образом многие профессиональные приложения, например различные CAD, игнорируют многопоточную производительность.

      Скорость в тяжёлых приложениях

      Производительность в ресурсоёмких задачах, загружающих максимум 8 ядер.

      Наибольшее влияние на результат оказывает производительность всех ядер и их количество, поскольку большинство подобных приложений охотно используют все ядра и соответственно увеличивают скорость работы.

      При этом отдельные промежутки работы могут быть требовательны к производительности одного-двух ядер, например, наложение фильтров в редакторе.

      Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне, так и без. Таким образом, вы видите усреднённые значения, соответствующие процессору.

      Скорость числовых операций

      Простые домашние задачи

      Требовательные игры и задачи

      Экстремальная нагрузка

      Для разных задач требуются разные сильные стороны CPU. Система с малым количеством быстрых ядер и низкими задержками памяти отлично подойдёт для подавляющего числа игр, но уступит системе с большим количеством медленных ядер в сценарии рендеринга.

      Мы считаем, что для бюджетного игрового компьютера подходит минимум 4/4 (4 физических ядра и 4 потока) процессор. При этом часть игр может загружать его на 100%, подтормаживать и фризить, а выполнение любых задач в фоне приведёт к просадке ФПС.

      В идеале экономный покупатель должен стремиться минимум к 4/8 и 6/6. Геймер с большим бюджетом может выбирать между 6/12, 8/8 и 8/16. Процессоры с 10 и 12 ядрами могут отлично себя показывать в играх при условии высокой частоты и быстрой памяти, но избыточны для подобных задач. Также покупка на перспективу - сомнительная затея, поскольку через несколько лет много медленных ядер могут не обеспечить достаточную игровую производительность.

      Подбирая процессор для работы, изучите, сколько ядер используют ваши программы. Например, фото и видео редакторы могут использовать 1-2 ядра при работе с наложением фильтров, а рендеринг или конвертация в этих же редакторах уже использует все потоки.

      Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне (максимальное значение в таблице), так и без (минимальное). Типичный результат указан посередине, чем больше заполнена цветная полоса, тем лучше средний результат среди всех протестированных систем.

      Бенчмарки

      Бенчмарки запускались на железе в стоке, то есть, без разгона и с заводскими настройками. Поэтому на разогнанных системах очки могут заметно отличаться в большую сторону. Также небольшие изменения производительности могут быть из-за версии биоса.


      Тесты AMD Phenom II X4 965 против AMD Phenom II X4 955

      Скорость в играх

      Производительность в играх и подобных приложениях, согласно нашим тестам.

      Наибольшее влияние на результат оказывает производительность 4 ядер, если они есть, и производительность на 1 ядро, поскольку большинство игр полноценно используют не более 4 ядер.

      Также важна скорость кэшей и работы с оперативной памятью.

      Скорость в офисном использовании

      Производительность в повседневной работе, например, браузерах и офисных программах.

      Наибольшее влияние на результат оказывает производительность 1 ядра, поскольку большинство подобных приложений использует лишь одно, игнорируя остальные.

      Аналогичным образом многие профессиональные приложения, например различные CAD, игнорируют многопоточную производительность.

      Скорость в тяжёлых приложениях

      Производительность в ресурсоёмких задачах, загружающих максимум 8 ядер.

      Наибольшее влияние на результат оказывает производительность всех ядер и их количество, поскольку большинство подобных приложений охотно используют все ядра и соответственно увеличивают скорость работы.

      При этом отдельные промежутки работы могут быть требовательны к производительности одного-двух ядер, например, наложение фильтров в редакторе.

      Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне, так и без. Таким образом, вы видите усреднённые значения, соответствующие процессору.

      Скорость числовых операций

      Простые домашние задачи

      Требовательные игры и задачи

      Экстремальная нагрузка

      Для разных задач требуются разные сильные стороны CPU. Система с малым количеством быстрых ядер и низкими задержками памяти отлично подойдёт для подавляющего числа игр, но уступит системе с большим количеством медленных ядер в сценарии рендеринга.

      Мы считаем, что для бюджетного игрового компьютера подходит минимум 4/4 (4 физических ядра и 4 потока) процессор. При этом часть игр может загружать его на 100%, подтормаживать и фризить, а выполнение любых задач в фоне приведёт к просадке ФПС.

      В идеале экономный покупатель должен стремиться минимум к 4/8 и 6/6. Геймер с большим бюджетом может выбирать между 6/12, 8/8 и 8/16. Процессоры с 10 и 12 ядрами могут отлично себя показывать в играх при условии высокой частоты и быстрой памяти, но избыточны для подобных задач. Также покупка на перспективу - сомнительная затея, поскольку через несколько лет много медленных ядер могут не обеспечить достаточную игровую производительность.

      Подбирая процессор для работы, изучите, сколько ядер используют ваши программы. Например, фото и видео редакторы могут использовать 1-2 ядра при работе с наложением фильтров, а рендеринг или конвертация в этих же редакторах уже использует все потоки.

      Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне (максимальное значение в таблице), так и без (минимальное). Типичный результат указан посередине, чем больше заполнена цветная полоса, тем лучше средний результат среди всех протестированных систем.

      Бенчмарки

      Бенчмарки запускались на железе в стоке, то есть, без разгона и с заводскими настройками. Поэтому на разогнанных системах очки могут заметно отличаться в большую сторону. Также небольшие изменения производительности могут быть из-за версии биоса.

      Ещё в самом первом материале, посвящённом исследованию производительности 4-ядерных процессоров AMD прошлых лет, упоминалось, что именно эта компания выпустила в конце 2007 года по сути первый "настоящий" 4-ядерный x86-процессор, то есть x86-процессор с 4 ядрами на одном кристалле и общим для всех ядер кэшем. Первые 4-ядерные x86-процессоры Intel, выпущенные годом ранее, представляли собой по сути "сдвоенные двухъядерные" — два 2-ядерных кристалла в одном корпусе с общим кэшем лишь в пределах каждого кристалла. В этом отношении первые 4-ядерные чипы Intel Core 2 Quad/Extreme напоминали первые же 2-ядерные чипы этой компании, Pentium D эпохи NetBurst, использовавшие аналогичную двухкристальную компоновку. С одной стороны такое внутреннее устройство многоядерных процессоров Intel имело очевидный недостаток — из-за отсутствия общего для всех ядер кэша обмен данными между ядрами из разных кристаллов мог выполняться лишь посредством системной шины и оперативной памяти, что очевидно менее эффективно. Однако, с другой стороны, уже проверенная временем двухкристальная компоновка позволила на год раньше конкурента выпустить на рынок 4-ядерные процессоры на новой микроархитектуре Core. Кроме того, как мы уже неоднократно отмечали, несмотря на в целом передовую архитектуру, первый 4-ядерный “блин” у AMD получился “комом” — даже несмотря на то, что процессоры этой компании вышли на рынок на год позже, их производительность на фоне конкурента в лице Core 2 Quad оказалась совсем невпечатляющей. И тут было уже не до маркетинговых лозунгов о "настоящих" 4-ядерных процессорах — AMD пришлось серьёзно скорректировать ценовую политику, чтобы окончательно не потерять рынок многоядерных процессоров для настольных систем.

      реклама

      Впрочем, и этот момент также уже упоминался не единожды в наших исследованиях, потенциал микроархитектуры K10 не был раскрыт в процессорах Phenom первого поколения преимущественно из-за проблем с достижением сравнительно высоких тактовых частот — проблемы, решённой компанией AMD уже к началу 2009 года с выпуском второго поколения процессоров Phenom, лишённых указанного выше недостатка. В последней статье цикла мы как раз и протестировали Phenom II X4 в связке с DDR3 памятью и убедились, что 4-ядерные процессоры второго поколения многоядерных решений микроархитектуры K10 в умеренном разгоне всё ещё могут обеспечить стабильные 30 FPS во многих современных играх даже на ультра-настройках. Конечно же, было бы интересно посмотреть, как в той же дисциплине выступят 4-ядерные процессоры Intel тех лет, пускай и не совсем "настоящие" (в упомянутом выше смысле). С этой целью в качестве конкурента Phenom II X4 925, принимавшему участие в нашем тестировании ранее, мы противопоставим сегодня серверный Xeon E5440, являющийся аналогом настольного Core 2 Quad Q9550. Да, на момент выхода Phenom II X4 на рынок у Intel имелись в арсенале уже и "настоящие" 4-ядерные процессоры Core i7 900-ой серии на новой микроархитектуре Nehalem, однако, эти процессоры были частью платформы LGA 1366, сборки на которой стоили значительно дороже и относились к классу высокопроизводительных настольных систем (HEDT). На рынке массовых настольных компьютеров господствующей платформой Intel всё ещё оставалась платформа LGA 775, и, соответственно, массовыми 4-ядерными предложениями Intel были как раз таки процессоры Core 2 Quad.


      Как и ранее, в качестве современного ориентира используется "гиперпень". Основы тестовых стендов AM3, LGA 775 и LGA 1151 составляют материнские платы ASUS M4A79T Deluxe, ASUS P5Q3 и MSI B250M PRO-VD, соответственно. Остальные комплектующие, кроме оперативной памяти, идентичны: видеокарта GeForce RTX 2060 Super от KFA2, бюджетный SSD WD Green на 240 ГБ под Windows и приложения, жёсткий диск Seagate 7200 BarraCuda на 3 ТБ под игры, блок питания Xilence Performance A+ 630 Вт. Первые два тестовых стенда оснащены 2 планками DDR3-1600 CL9 памяти с Aliexpress объёмом по 4 ГБ каждая, о которой неоднократно писалось ранее, последний— 2 планками DDR4-2400 CL17 памяти так же объёмом по 4 ГБ каждая.


      реклама
      var firedYa28 = false; window.addEventListener('load', () => < if(navigator.userAgent.indexOf("Chrome-Lighthouse") < window.yaContextCb.push(()=>< Ya.Context.AdvManager.render(< renderTo: 'yandex_rtb_R-A-630193-28', blockId: 'R-A-630193-28' >) >) >, 3000); > > >);

      Небольшой спойлер: на фото тестовый стенд LGA 775 трудится над сбором данных уже для следующей статьи (нетрудно заметить, что планок памяти установлено уже 4, а не 2), но об этом в другой раз. Ах да, ничего свободного под LGA 775, кроме Cryorig R1 Ultimate под рукой не нашлось, так что не обессудьте — для небольшого разгона 2-секционный суперкулер явно перебор, но дешёвая "водянка" ID-Cooling FROSTFLOW X 240, которая использовалась ранее в тестах платформы AM3, не имеет креплений под LGA 775. Пользуясь случаем, передаю привет магазину НИКС, на сайте которого указано обратное — что, дескать, поддерживает. Впрочем, не суть, так что не будем отвлекаться. Ниже приведена таблица основных технических характеристик сравниваемых процессоров.


      Разгон процессоров AMD подробно обсуждался ранее, вкратце Athlon II X4 630 покорил планку в 240 МГц "по шине", а Phenom II X4 925 — в 260 МГц, и, таким образом, результирующие частоты этих процессоров в разгоне составили 3.36 и 3.64 ГГц, соответственно. Делитель памяти был установлен в значение 3:10, так что итоговая частота памяти в разгоне оказалась равной DDR3-1733 (9-9-9) и DDR3-1600 (9-9-9), соответственно. В стоке память также работала в режиме DDR3-1600 (9-9-9).


      реклама

      Xeon E5440 также разгонялся "по шине". Цель ставить рекорды вновь не стояла, так что ограничившись напряжением в 1.375 В на ядра процессора удалось разогнать FSB с 333 МГц до 425. Частота процессора при этом возросла с 2.83 до 3.6 ГГц, а память заработала в режиме DDR3-1700 (9-9-9). Таким образом, в разгоне частотные характеристики процессора и памяти оказались практически идентичными таковым для Phenom II X4 925, что позволит провести сравнение в практически идентичных условиях. В стоке с Xeon E5440 память работала на частоте DDR3-1333 (7-7-7), то есть на официально заявленной Intel для P45 максимальной частоте памяти DDR3.


      Отметим, что как и в случае с тестируемыми процессорами AMD, многие производители материнских плат с чипсетом P45 повышали максимально поддерживаемую тактовую частоту памяти до 1600 МГц и выше. Например, у нашей платы, ASUS P5Q3, официально заявлена поддержка DDR3-1600 и даже DDR3-1800. Однако, указанные более высокие частоты доступны для Xeon E5440 только в разгоне минимальный делитель на память 1:2, так что в стоке с Xeon E5440 при эффективной частоте системной шине 1333 МГц (4×333 МГц) больше чем DDR3-1333 мы позволить себе не можем. Впрочем, при тестировании 4-ядерных процессоров K10 разница в играх в стоке с DDR3-1333 CL7 и DDR3-1600 CL9 была минимальной, так что этот фактор не определяющий.

      AIDA64

      Начинаем по традиции с результатов синтетических тестов из пакета AIDA64.

      реклама


      И здесь дела для процессора Intel обстоят не лучшим образом: если показатели представителей микроархитектуры K10 на фоне современного "гиперпня" со стоковой DDR4-2400 памятью не впечатляли, то с Xeon картина ещё хуже — даже в комплексном разгоне (увеличение не только частоты процессора, но и контроллера памяти) Xeon E5440 значительно отстал не только от G4600, но и от 4-ядерных решений конкурента. При этом в тестах записи отставание Xeon не столь существенно, а вот при чтении (и, как следствие, копировании) Xeon уже далеко позади. В чём причина такого поведения платформы с Xeon сказать непросто, скорее всего такие показатели — особенности используемых контроллеров памяти, ведь если бы причиной низких результатов Xeon на чтение было отсутствие общего для всех ядер кэша, то Athlon II X4 в этом тесте должен был существенно проиграть Phenom II X4, чего не наблюдается.

      Переходим к синтетическим тестам центрального процессора. На диаграммах, приведённых ниже, результаты оценки производительности в тестах CPU и FPU вновь, как и ранее, для наглядности приведены относительно таковых для Pentium G4600, показатели которого взяты за 1.



      В целом видим, что считает Xeon E5440 так же быстро, как и 4-ядерные представители AMD K10, а при использовании арифметики с плавающей точкой даже немного быстрее. Из общей картины вновь выбивается лишь PhotoWorxx, впрочем, такое поведение данного теста сюрпризом для нас уже не стало — результаты в PhotoWorxx сильно зависят от скоростных показателей подсистемы памяти, которые у Xeon заметно хуже. С одной стороны, можно сказать, что PhotoWorxx не место в синтетических тестах производительности CPU, так как данный тест не измеряет производительность вычислительных блоков процессора в условиях максимально возможной изоляции от других узлов компьютера, с другой — PhotoWorxx за счёт этой своей особенности значительной реалистичнее остальных тестов AIDA64.

      Результаты игровых тестов

      Grand Theft Auto V (2015, RAGE, DX11)


      Sid Meier's Civilization VI (2016, Собственный, DX11)


      Total War: Warhammer II (2017, TW Engine 3, DX11)



      Middle-earth: Shadow of War (2017, Firebird Engine, DX11)


      F1 2018 (2018, EGO Engine, DX11)


      Shadow of the Tomb Raider (2018, Foundation Engine, DX12)


      Hitman 2 (2018, Glacier 2, DX12)


      Far Cry New Dawn (2019, Dunia 2, DX11)


      Metro Exodus (2019, 4A Engine, DX12)


      Borderlands 3 (2019, Unreal Engine 4, DX12)


      Среднегеометрические результаты и выводы


      Картина в абсолютном большинстве протестированных проектов получилась идентичная, так что подробно обсудим лишь среднюю по всем тестам производительность. Итак, что же мы видим по итогу? На практически равных частотах с практически одинаковой памятью как в стоке, так и в небольшом разгоне Xeon E5440 оказался чуть быстрее Athlon II X4 630 и несколько медленнее Phenom II X4 925. Если теперь принять во внимание результаты синтетических тестов AIDA64, показавших примерно одинаковую скорость счёта тестируемых процессоров, то причина, по которой участники тестирования заняли соответствующие места, лежит на поверхности — основной архитектурной характеристикой, оказавшей влияние на результаты, по всей видимости, является наличие или отсутствие общего кэша для ядер. Athlon II X4, напрочь лишённый указанной роскоши, финишировал последним, Xeon, лишь каждая пара ядер которого снабжена общим L2-кэшем, пришёл вторым, а Phenom II X4 с общим L3-кэшем на все 4 ядра закономерно одержал победу.

      А вот в недалёком прошлом, в конце 2000-х и начале 2010-х, расклад сил был несколько иным — на равных частотах Core 2 Quad в большинстве игр были всё же быстрее, пускай и незначительно, чем Phenom II X4. Что же изменилось в игровой индустрии с тех пор, что позволило Phenom II X4 спустя годы обойти конкурента? Причина изменений в расстановке сил, по всей видимости, кроется в умении современных игр значительно эффективнее использовать 4 и даже более ядер центрального процессора, в то время как на момент выхода первых 4-ядерных x86-процессоров для настольных систем на рынок, производительность большей части игр редко хоть как-то масштабировалась на более чем 2 ядра. В те годы Core 2 Quad и Athlon/Phenom II X4 за редким исключением показывали в играх производительность равную таковой у своих 2-ядерных "младших братьев" Core 2 Duo и Athlon/Phenom II X2. Но прогресс не стоит на месте и к концу 2010-х большая часть игровых проектов уже была способна сравнительно эффективно использовать как минимум 4 процессорных ядра, и узкое место 2-кристальной компоновки Core 2 Quad — отсутствие общего для всех 4 ядер кэша — дало о себе знать.

      Обыгрывая известный в компьютерном сообществе мем, можно сказать, что потенциал "настоящей" многоядерной архитектуры K10 с общим кэшем на все ядра, наконец-то полностью раскрылся. Относиться к этому факту можно по-разному — поклонники AMD с гордо поднятой головой чётким и громким голосом продекламируют "А мы ведь говорили!", сторонники Intel отмахнутся, резонно указав на то, что полностью потенциал K10 раскрылся лишь тогда, когда процессоры этого поколения уже по большей части потеряли свою актуальность. Справедливости ради надо отметить, что в большинстве проектов 2015-2018 годов рассмотренные 4-ядерные процессоры как AMD, так и Intel в небольшом разгоне всё ещё способны обеспечить стабильные 30 (а местами и больше) FPS даже на ультра-настройках. Дальше, конечно, хуже — в некоторых играх 2019 ради стабильных 30 FPS придётся опуститься уже до средних настроек, а часть проектов, кроме того, вообще не запустится из-за отсутствия поддержки наборов инструкций SSE4.2. Суммарно, конечно, на данный момент эти процессоры выглядят, мягко скажем, не впечатляюще, но "консольный опыт" в большинстве игр получить вполне ещё можно. :D Естественно, из современных процессоров даже 2-ядерный 4-поточный "гиперпень" в стоке способен продемонстрировать игровую производительность того же порядка при более низких значениях энергопотребления и тепловыделения. Но если вспомнить, сколько протестированным сегодня процессорам лет, то какие вообще к ним могут быть претензии?

      Читайте также: