Sin коэффициент мощности показывающий какую долю полной мощности составляет реактивная мощность

Обновлено: 07.07.2024

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула: S = U I, где U – это напряжение сети, а I – это сила тока сети. Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда: S = U * I * cos φ.

Отрицательный косинус

В практике пользования прибором анализа напряжения HIOKI у меня были случаи, когда значение косинуса было отрицательным. В последствии выяснилось, что была неправильно включена компенсаторная установка и произошла перекомпенсация. То есть cos φ < 0, что и должно быть, но конденсаторные установки используются неправильно, и возможны ситуации, когда напряжение в сети из-за этого может подняться.

Активная мощность

В цепях однофазного синусоидального тока

Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует необратимые превращения электрической энергии в другие виды энергии (тепловую и электромагнитную).

В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи. Единица измерения активной мощности - Ватт.

Если угол φ равен 0 и cos φ =1 , то в цепи присутствует чисто активная нагрузка, полная мощность совпадает с активной и вся электрическая энергия превращается в нагрузке в другие виды энергии. Наличие реактивных элементов, уменьшает значение cos φ , и соответственно, долю активной мощности в полной мощности. Показатель cos φ называют коэффициентом мощности.

Рекомендации по выбору компенсирующих устройств реактивной мощности

Мощность компенсирующего устройства выбирается исходя из мощности нагрузки, а также существующего и желаемого коэффициентов мощности.

Для расчета параметров можно воспользоваться следующей методикой.

Определить из таблицы коэффициент К, который считается по формулам на основе углов фаз некомпенсированного и компенсированного питания:

Таблица для определения коэффициента выбора

Таблица для определения коэффициента выбора конденсаторов

Например, текущий cosϕ = 0,7, желаемый cosϕ = 0,96. Тогда К = 0,73.

Как я уже говорил, не рекомендуется компенсировать реактивную мощность полностью (до cosϕ = 1), так как при этом возможна перекомпенсация (за счет переменной величины активной мощности нагрузки и других случайных факторов)

Этот тот самый случай, когда к идеалу стремиться не нужно)

Далее, необходимую емкостную мощность конденсаторных батарей определяют по формуле: Qc = КP (ВАр).

Например, в нашем случае, при мощности 1000 кВт полная мощность конденсаторной батареи будет 730 кВАр.

При выборе конденсаторной батареи она должна обладать следующими параметрами (не хуже):

(рекомендации даны поставщиком КУ)

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность (это полезная мощность, отбираемая нагрузкой, в том числе и ИБП, из электросети и преобразуемая в энергию любого иного вида (механическую, тепловую, электрическую, электромагнитную и др.) и реактивная мощность ( это мощность или поток энергии, циркулирующий через реактивное сопротивление электрической цепи (емкостное или индуктивное).

Рассеяния энергии на реактивных элементах не происходит, так как полученная ими энергия от источника и энергия и возвращенная обратно в сеть в течение периода эквивалентны. Считается, что в большинстве случаев реактивная энергия (мощность), циркулирующая в электрической цепи, является паразитной и приводит к нежелательному разогреву проводников, а также к перегреву и ухудшению режимов работы прочих устройств сети, как генерирующих электричество, так и его потребителей.) точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007). Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности.
Все эти 4 параметра:

  • Активная мощность: обозначение P, единица измерения: Ватт
  • Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный)
  • Полная мощность:обозначение S, единица измерения: ВА (Вольт Ампер)
  • Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина

Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S
Также cosФ называется коэффициентом мощности (Power Factor – PF)

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8. В стабилизаторах напряжения дело обстоит иначе.

Для стабилизатора напряжения коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

Измерительные нормирующие преобразователи часто используются в задачах измерения электрических параметров.

К числу важнейших параметров, характеризующих потребителей электроэнергии, относится мощность. Если для цепей постоянного тока само понятие мощности является достаточно простым, то для цепей переменного тока картина становится несколько сложнее.

В рассмотрение вводят три разных мощности: полную, активную и реактивную. Причиной тому является то обстоятельство, что в цепях переменного тока помимо активной нагрузки начинают проявлять себя индуктивные и емкостные составляющие.

Это приводит к тому, что между напряжением и током появляется разность фаз, а энергия не только выделяется на активной нагрузке, но может накапливаться и затем высвобождаться в емкостях и индуктивностях.

Дадим определение указанных мощностей и кратко рассмотрим их смысл.

Косинус угла в электротехнике

Кто хочет, почитайте про cos φ в Википедии, а я расскажу своими словами.

Итак, что такое косинус в электротехнике? Дело в том, что есть такое явление, как сдвиг фаз между током и напряжением. Он происходит по разным причинам, и иногда важно знать о его величине. Сдвиг фаз можно измерить в градусах, от 0 до 360.

На практике степень реактивности (без указания индуктивного либо емкостного характера) выражают не в градусах, а в функции косинуса, и называют коэффициентом мощности:

  • P – активная мощность, которая тратится на совершение полезной работы,
  • S – полная мощность.

Полная мощность является геометрической суммой активной Р и реактивной Q мощностей, поэтому формулу коэффициента мощности можно записать в следующем виде:

Формула коэффициента мощности через активную и реактивную мощности

В иностранной литературе коэффициент мощности cos φ называют PF (Power Factor). Фактически, это коэффициент, который говорит о сдвиге сигнала тока по отношению к сигналу напряжения.

На самом деле, всё не так просто, подробности ниже.

Легендарный Алекс Жук очень толково рассказал, что такое реактивная мощность, и всё по этой теме:

В видео подробно и доступно изложена вся теория по теме.

Размерности. Что в чём измеряется

Активная мощность Р ⇒ Вт (то, что измеряет домашний счетчик),

Реактивная мощность Q ⇒ ВАР (Вольт · Ампер Реактивный),

Полная мощность S ⇒ ВА (Вольт · Ампер).

Кстати, в стабилизаторах и генераторах мощность указана в ВА. Так больше. Маркетологи знают лучше.

Также маркетологи знают, что на потребителях (например, на двигателях) мощность лучше указывать в Вт. Так меньше.

Что такое коэффициент мощности cos ф?

Активная, реактивная, неактивная и полная мощность электрического тока

Мощность
Мощность определяется работой, совершаемой в одну секунду (характеризует насколько быстро совершается работа).
Электрическая мощность есть расход электрической энергии в одну секунду.
Электрическая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
Протекание тока в электрической цепи сопровождается потреблением электроэнергии от источников, скорость потребления энергии характеризуется мощностью.
Работой электрического тока называют превращение его энергии в какую-либо другую энергию, например в тепловую, световую, механическую. Работоспособность тока оценивается по его мощности, обозначаемой буквой P, в международной системе W.
Мгновенная мощность - произведение мгновенных значений напряжения U и силы тока I на участке электрической цепи.
P=U*I
В большинстве случаев речь идет о некой усредненной мощности, которая получается интегрированием (похоже на вычисление площади) мгновенной мощности в течение периода.
Чаще всего речь идет о мощности потребляемой устройством, а для источников энергии указывается их выходная мощность - мощность которую они могут отдать потребителю (нагрузке).

Активная мощность
Активная мощность - среднее значение мгновенной мощности за период.
Мощность цепи имеющей только активные сопротивления (нагрузку) называется активной мощностью.
Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную-только ту которая не вернется в источник).
Активная мощность характеризует необратимый (безвозвратный) расход энергии тока.

В цепях постоянного тока значение мгновенной и средней мощности за промежуток времени совпадают, понятие реактивной мощности отсутствует. В цепях переменного тока так происходит, если нагрузка чисто активная (электронагреватель, утюг, лампа накаливания). При такой нагрузке напряжения и фаза тока совпадают и почти вся мощность передается в нагрузку.

Реактивная мощность (Q)
Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду. Она характеризует реактивную энергию - энергию не расходующуюся безвозвратно, а лишь временно запасающуюся в магнитном поле. Реактивная мощность характеризует энергию, совершающую колебания между источником и реактивным (индуктивным и/или емкостным) участком цепи без ее преобразования.
Измеряется вольт-амперами реактивными (вар или международное: var).

Если нагрузка индуктивная (трансформаторы, электродвигатели, дроссели, электромагниты), ток отстает по фазе от напряжения, если нагрузка емкостная (различные электронные устройства - конденсатор как накопитель энергии в импульсном блоке питания), то ток по фазе опережает напряжение. Поскольку ток и напряжение не совпадают по фазе (реактивная нагрузка), то в нагрузку (потребителю) передается только часть мощности (полной мощности), которая могла бы быть передана в нагрузку, если бы сдвиг фаз был равен нулю (активная нагрузка).

Несмотря на то, что реактивная энергия переносится от источника к реактивной нагрузке и обратно (дважды за период, каждую четверть периода меняя направление), реактивный ток вызывает дополнительные потери энергии в активном сопротивлении проводов, соответственно энергии от источника берется больше, чем возвращается (потери не вернутся обратно в источник), следовательно генератор (трансформатор, источник бесперебойного питания и т.п.) следует брать большей мощности, а провода большего сечения.
В радиотехнике реактивная мощность может быть полезной (например колебательные контура).

Крупные предприятия генерируют большие реактивные токи, которые отрицательно сказываются на функционировании энергосистемы. По этой причине, для них проводится учет как активной, так и реактивной составляющей мощности. Для уменьшения генерации реактивных токов на предприятиях применяют установки компенсации реактивной мощности.

Полная мощность
Полная мощность (S) равна напряжению умноженному на ток, соответственно измеряется в Вольт-амперах (ВА, или международное VA).
При линейной нагрузке полная мощность равна корню квадратному из суммы квадратов активной и реактивной мощности.
При нелинейной нагрузке (например импульсные блоки питания без корректора коэффициента мощности) полная мощность равна корню квадратному из суммы квадратов активной и неактивной мощности.

Практической единицей измерения электрической энергии является киловатт-час (кВт*ч), т.е. работа совершаемая при неизменной мощности (1 кВт) в течение 1 часа. Внесистемная единица измерения количества произведенной или потреблённой энергии, а также выполненной работы. Используется преимущественно для измерения потребления электроэнергии в быту и производстве, для измерения выработки электроэнергии в электроэнергетике.

Как найти реактивную мощность трансформатора?

Расчет потери реактивной мощности в трансформаторе.

реактивная мощность полей рассеяния Qр = Sн*Кз²*Uкз/100, где Uкз – напряжение короткого замыкания в %, Кз – коэффициент загрузки, который определяется отношением полной мощности загрузки трансформатора к его номинальной мощности Sп/Sт.

Как рассчитать коэффициент мощности?

Определение коэффициента мощности

PF = P (кВт)/S (кВА), где: P = активная мощность; S = полная мощность. Коэффициент мощности нагрузки, которая может являться электроприемником (ЭП) или совокупностью таких ЭП (например, вся система), задается отношением P/S, т.

В прошлой статье я рассказал при исследование качества электроэнергии при помощи анализатора HIOKI. Там я обещал продолжить рассказ и поделиться своими знаниями по таким понятиям, как коэффициент мощности (известный в народе как cos φ) и гармоники питающего напряжения.

Характеристики преобразователей мощности

Рассмотрим измерительный преобразователь мощности НПСИ-МС1 , выпускаемый научно-производственной фирмой «КонтрАвт» (см. рис. 1).

Рис. 1. Внешний вид измерительного преобразователя мощности НПСИ-МС1, выпускаемого НПФ «КонтрАвт» Рис. 1. Внешний вид измерительного преобразователя мощности НПСИ-МС1, выпускаемого НПФ «КонтрАвт»

Измерительные преобразователи характеризуются типами и диапазонами входных и выходных сигналов.

В преобразователях НПСИ-МС1 выбор входных и выходных сигналов программируется пользователем. Устанавливаются не только диапазоны преобразования, но и типы измеряемого параметра (различные виды мощности, коэффициент мощности, ток и напряжение).

Типы и диапазоны преобразования измеряемых параметров приведены в табл. 1.

Таблица 1. Типы и диапазоны измеряемых параметров преобразователя НПСИ-МС1 Таблица 1. Типы и диапазоны измеряемых параметров преобразователя НПСИ-МС1

Для мощности в таблице указаны максимальные значения, которые соответствуют максимальным диапазонам измерения напряжения (0…450 В) и тока (0…5 А).

Преобразователь можно настроить и на меньшие диапазоны, задавая соответствующие диапазоны измерения напряжения и тока. Например, выбирая диапазон напряжения 0…150 В и тока 0…1 А, получим диапазон полной мощности 0…150 ВА.

Особенность измерительных преобразователей НПСИ-МС1 заключается в том, что наряду с переменным напряжением и током они могут измерять и преобразовывать постоянные напряжения и ток. С учетом физического смысла действующего значения, измеренное действующее значение постоянного сигнала будет равно уровню самого постоянного сигнала, а полная мощность будет равна активной.

Указанные диапазоны измерения приведены для случая прямого включения преобразователя в цепь, как это показано на рис. 2. Однако, фактический диапазон измерения в цепях переменного тока можно увеличить, применяя трансформаторы напряжения и тока. Возможна и комбинированная схема прямого и трансформаторного подключения.

Рис.2. Подключение входных сигналов при измерении мощности и коэффициента мощности с использованием измерительных трансформаторов и с прямым подключением к нагрузке Рис.2. Подключение входных сигналов при измерении мощности и коэффициента мощности с использованием измерительных трансформаторов и с прямым подключением к нагрузке

Тип выходного сигнала (ток или напряжение), а также их диапазон также программируются пользователем (см. табл. 2)

Таблица 2. Типы и диапазоны выходных сигналов преобразователя НПСИ-МС1 Таблица 2. Типы и диапазоны выходных сигналов преобразователя НПСИ-МС1

Преобразователи НПСИ-МС1 обеспечивают гальваническую развязку входных и выходных сигналов. Напряжение изоляции составляет 1500 В.

Основная погрешность измерения мощности, коэффициента мощности, действующих значений напряжения и тока в сети частотой 50 Гц и их преобразования в постоянные унифицированные сигналы тока и напряжения составляет 0,5 %.

Частота выборки в преобразователе равна 5 кГц, это позволяет измерять с указанной точностью синусоидальные сигналы вплоть до частот 400 Гц (на частоте 1 кГц погрешность составляет 1 %).

Преобразователь можно использовать и для измерения мощности и действующих значений напряжения и тока несинусоидальной формы, например, в цепях с симисторными коммутаторами.

В этом случае может появиться дополнительная погрешность за счет ошибок измерения гармоник свыше 400 Гц. Вклад этих гармоник в общую погрешность следует оценивать с учетом их доли в сигнал.

На измерительные преобразователи НПС-МС1 можно возложить и функцию контроля за уровнем электрических параметров. Контроль обеспечивается сигнализацией по уровню параметра. Преобразователи НПСИ-МС1 выпускаются как с функцией сигнализации, так и без нее. В модификациях с сигнализацией выполняемая функция выбирается пользователем из четырех возможных вариантов:

  • Функция 1. Сигнализация срабатывает, если сигнал больше заданного уровня;
  • Функция 2. Сигнализация срабатывает, если сигнал меньше заданного уровня;
  • Функция 3. Сигнализация срабатывает, если сигнал больше заданного уровня, и фиксируется в этом состоянии до сброса пользователем;
  • Функция 4. Сигнализация срабатывает, если сигнал меньше заданного уровня, и фиксируется в этом состоянии до сброса пользователем.
Рис.3. Диаграмма работы сигнализации «превышение» без защелки Рис.3. Диаграмма работы сигнализации «превышение» без защелки Рис.4. Диаграмма работы сигнализации «превышение» с защелкой Рис.4. Диаграмма работы сигнализации «превышение» с защелкой

Действие сигнализации для функций 1 и 3 иллюстрируют рис. 3, 4. Функции 3 и 4 представляют собой сигнализацию с защелкой. Сбросить его может пользователь только с передней панели преобразователя. Даже временное отключение питания не может сбросить защелку – после возобновления питания сигнализация будет включена.

Таким образом, сигнализация с защелкой позволяет зафиксировать факт аварийной ситуации, а необходимость выполнения процедуры сброса с панели гарантирует, что обслуживающий персонал обнаружит аварийную ситуацию и предпримет действия, предусмотренные технологическим регламентом.

Помимо выполнения функций сигнализации, преобразователи обнаруживают аварийные ситуации, которые могут возникнуть в системе: обрыв линий связи входных, обрыв выходных сигналов (только для 4…20 мА), выход сигналов за допустимый диапазон, целостность параметров в энергонезависимой памяти.

При обнаружении аварийных ситуаций (не путать с работой сигнализации) на преобразователе зажигается индикатор АВАРИЯ, на дисплее отображается код аварийной ситуации, а выходной ток принимает значение, которое при конфигурировании задает пользователь – низкий или высокий аварийный уровень.

Измерительные системы, принимающие сигналы преобразователей, регистрируют эти аварийные уровни, и следовательно, обнаруживают аварийные ситуации.

Питание преобразователей НПСИ-МС1 в зависимости от модификации производится либо от сети переменного напряжения 220 В (допустимый диапазон рабочих напряжений 85…265 В), либо от постоянного напряжения 24 В (допустимый диапазон рабочих напряжений 10…42 В).

Конструктивно преобразователи НПСИ-МС1 выполнены в корпусе с габаритными размерами (D´H´W) 115 ´ 110 ´ 22,5 мм, который обеспечивает монтаж на DIN-рельс 35 мм по стандарту EN 50 022.

Настройка преобразователя (конфигурирование) осуществляется пользователем с передней панели с помощью кнопок с контролем по цифровому двухразрядному дисплею (см. рис. 4). На цифровом дисплее отображается уровень сигнала в процентах от диапазона. Уровень сигнала наглядно показывает и линейный бар-граф.

Полная мощность

Полная мощность S в однофазной цепи переменного тока образуется из двух составляющих: активной мощности Р и реактивной мощности Q .

Она равна произведению действующего значения тока I на действующее значение напряжения U и измеряется в ВА - вольт-амперах (кВА – киловольт-амперах):

Практическое значение полной мощности определяется тем, что она характеризует фактические нагрузки на элементы электрической цепи: провода, коммутационные элементы, трансформаторы, линии электропередачи и т.п. Эти нагрузки задаются протекающими токами, а не фактически использованной потребителем электроэнергией.

Для измерения полной мощности измеряют действующие значения напряжения и тока, а затем их перемножают.

Есть очень важное обстоятельство, которое необходимо учитывать при выборе оборудования для измерения мощности. Дело в том, что на практике сигналы тока и напряжения могут сильно отличаться от правильной синусоидальной формы.

Это значит, что, выбирая измерительный прибор для измерения действующих значений напряжения и тока, следует выяснить, является ли сигнал синусоидальным или нет, и какой метод измерения действующего значения реализует измерительный прибор.

В реальных условиях вследствие использования нелинейной нагрузки потребителем, в результате процесса передачи и преобразования электроэнергии и ряда других факторов, форма напряжения и тока отличается от синусоидальной формы.

Процентное увеличение доли нелинейных, несимметричных, импульсных нагрузок потребителя (персональные компьютеры, приводы с регулируемой скоростью, сварочные инверторы, осветительное оборудование, выпрямительные агрегаты и др.) с каждым годом всё больше растёт.

Применение цифровых методов измерения и обработки сигналов, позволяет проводить измерение действующих значений более точно и для сигналов несинусоидальной формы.

Рекомендации по уменьшению гармонических составляющих питающего напряжения

Для уменьшения гармоник напряжение рекомендуется сделать следующее:

  1. На все преобразователи частоты мощностью более 10 кВт в обязательном порядке установить линейные дроссели переменного тока. Лучшим вариантом будет выбор дросселей с высоким импедансом (3-4 %), которые уменьшат уровень гармоник на 15-20%. Кроме того, установка дросселей улучшит надежность и отказоустойчивость преобразователей.
  2. На преобразователи частоты мощностью более 35 кВт, кроме дросселей переменного тока, установить дроссели постоянного тока для питания звена постоянного тока. Это дополнительно уменьшит выбросы гармоник в питающую сеть на 5-10%.
  3. Применить пассивные LC-фильтры на вводе питания преобразователей частоты и других нелинейных нагрузок.

Для выполнения приведенных рекомендаций желательно обратиться к инструкциям производителей и специалистам.

Креме того, рекомендуется проверить состояние питающих проводов, кабелей, клемм, переходных сопротивлений силовых соединений фазных и нейтральных проводов, качество соединений заземления корпусов электроприборов и т.д. В результате обследования выявлены преобразователи с отключенным заземлением.

Что такое активная мощность?

Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии.

Анализ полученных результатов обследования

На предприятии нужно было выбрать компенсирующую установку для увеличения коэффициента мощности. Но перед её покупкой было решено обратить внимание на гармоники.

Были реальные случаи, когда из-за высокого уровня гармоник напряжения взрывались и загорались конденсаторные установки

В ГОСТ 13109-97 указан допустимый уровень гармонических искажений по напряжению, равный 8%. По проведенным измерениям, этот уровень не превышен. Однако, при увеличении мощности в 5 раз можно ожидать увеличение процента гармоник (THD) в то же количество раз. Следовательно, возможно увеличение коэффициента гармоник с 2,3 % до 11,5 %.

Однако, по рекомендациям производителей для безопасной эксплуатации батарей конденсаторов установок стандартного исполнения уровень THD не должен превышать 2 %. При этом уровень гармоник тока не учитывается и ГОСТом не регламентируется.

Следовательно, необходимо применять совместно с конденсаторными установками фильтры высших частот (фильтрокомпенсирующие устройства).

Измерения на предприятии

При индуктивном характере нагрузки, который наблюдается на практике в большинстве случаев, ток отстает от напряжения (отрицательный сдвиг фаз), что видно на экране прибора HIOKI 3197 (табличные данные) при проведении измерений:

Векторная диаграмма тока и напряжения

В данном случае видно, что ток отстает от напряжения примерно на 26°.

Из вышеприведенного измерения видно, что при угле отставания тока (сдвиге фаз) 26° cos φ = 0,898. Данный расчет подтверждается измеренным значением.

Измерение проводилось в течение около двух часов, за это время оборудование (нагрузка) циклически включалось и выключалось. За всё время измерения коэффициент нелинейных искажений напряжения THD не превысил 1,3% по каждой из фаз.

Результаты измерений приведены ниже:

Измеренные гармоники на экране прибора

Измеренные гармоники напряжения, тока и мощности

Режим мультиметра HIOKI

Для проверки проведём расчет по выше приведенной формуле для самых интенсивных гармоник (5, 7, 11):

Расчет гармоник напряжения

Как видно, остальные гармоники имеют пренебрежимо малый вес.

Временной график THD:


График THD (коэфта нелинейных искажений)

Временной график cosϕ:


Как найти полезную мощность?

Как компенсируют реактивную составляющую мощности?

Для понижения (компенсации) индуктивного характера реактивной составляющей используют введение емкостной составляющей в нагрузку, которая имеет положительный сдвиг фаз напряжения и тока (ток опережает напряжение). Реализуется это путем подключения параллельно нагрузке конденсаторов необходимой емкости. В результате происходит компенсация, и нагрузка со стороны питающей сети становится активной, с малой долей реактивной составляющей.

Компенсаторная установка на контакторах

Конденсатор компенсатора

Конденсатор компенсатора реактивной мощности

Как найти полную мощность зная активную и реактивную?

Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

PF или DPF?

Но в реальном мире вся нагрузка не только не активная, но и не линейная. Значит, ток через неё имеет хоть и периодическую, но далеко не синусоидальную форму. Искаженная синусоида означает, что кроме первой гармоники имеются и другие, вплоть до бесконечности.

Вот как обстоят иногда дела:

Формы напряжения и тока

Формы напряжения и тока при нелинейной нагрузке

Гармоники напряжения, тока и мощности

Обычно, когда нагрузка симметричная (трехфазные потребители), за счёт принципов работы все гармоники, кратные 2 и 3, почти отсутствуют. В итоге остаются в основном 5, 7, 11, 13 гармоники, имеющие частоты соответственно частоты 250, 350, 550, 650 Гц.

Для учета коэффициента мощности в приборе HIOKI есть параметр DPF (Displacement Power Factor, смещённый коэффициент мощности), который учитывает только первую гармонику и равен cos φ.

коэффициент мощности PF - DPF

Коэффициенты мощности полный PF и смещённый DPF (для чистого синуса)

В итоге можно сказать, что справедливо выражение:

cos φ = DPF ≤ PF

Как найти косинус фи?

Как рассчитать мощность зная ток и напряжение?

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

Реактивная мощность

Реактивная мощность характеризует нагрузки, имеющие реактивный характер – индуктивный или емкостной. При таких видах нагрузки угол между напряжением и током не равен нулю и появляется реактивная составляющая мощности:

Особенность реактивных элементов нагрузки в цепях переменного тока заключается в том, что они периодически преобразуют электрическую энергию переменного тока в энергию электрического или магнитного поля ( в зависимости от вида нагрузки) и обратно, то есть потребления энергии как таковой нет. Но, несмотря на то, что фактического потребления энергии в реактивностях нет, реактивный характер нагрузки проявляет себя негативно.

В частности, токи, протекая от источника в реактивность и обратно, разогревают подводящие провода, тем самым создавая непродуктивные потери.

Именно поэтому расчет проводов и других элементов устройств переменного тока производят, исходя из полной мощности S , которая учитывает активную и реактивную мощности. В связи с этим необходимо следить за значением коэффициента мощности cos φ и предпринимать меры по его увеличению до 1 .

Как найти полную мощность трансформатора?

Все составляющие связаны соотношением: S2=P2+Q2. Единица измерения – ВА (вольт-ампер).

Как определить полную мощность трехфазной цепи?

Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3·Uф·Iф·cosфи =3·Uф·I·cosфи. При соединении в треугольник P=3·Uф·Iф·cosфи=3·U·Iф·cosфи. На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник.

В чем измеряется коэффициент мощности?

Коэффициент мощности — величина, равная отношению активной мощности P, потребляемой нагрузкой, к ее полной мощности S. Полная мощность — это произведение действующих значений напряжения и тока: S=U×I, измеряется в вольт-амперах (ВА).

Минусы и плюсы наличия реактивной составляющей

При питании нагрузки, имеющей только активный характер, сдвиг фаз между током и напряжений равен нулю. Этот случай можно назвать идеальным, при нем можно питающие сети используются полностью, поскольку нет потерь на бесполезную реактивную составляющую.

Реактивная составляющая не так бесполезна. Она формирует электромагнитное поле, нужное для адекватной работы реактивной нагрузки.

В реальной жизни нагрузка, как правило, имеет индуктивный характер (ток отстает от напряжения), и является активно-реактивной. Поэтому всегда, когда говорят о сдвиге фаз и о косинусе, имеют ввиду индуктивную нагрузку.

Основными источниками реактивной составляющей электроэнергии являются трансформаторы и асинхронные электродвигатели.

Чисто реактивная нагрузка бывает только в учебнике. Реально за счет потерь всегда присутствует и активная составляющая тоже.

Реактивная составляющая мощности питания является негативным фактором, поскольку:

  • Возникают дополнительные потери в линиях передачи электроэнергии,
  • Снижается пропускная способность линий электропередачи,
  • Происходит падение напряжения на линиях передачи из-за увеличения реактивной составляющей тока питающей сети,
  • Происходит дополнительный нагрев и износ систем распределения и трансформации электроэнергии,
  • Возможно появление резонансных эффектов на частотах гармоник, что может вызвать перегрев питающих сетей.

По приведенным причинам необходимо понижать долю реактивной мощности в сети (повышать косинус) – это выгодно и энергоснабжающим организациям, и потребителям с распределенными сетями.

Коэффициент реактивной мощности Тангенс φ

Часто более удобным является коэффициент реактивной мощности tg φ, который показывает отношение реактивной мощности к активной. Понятно, что при tg φ = 0 достигается идеал cos φ = 1.

Гармоники питающего напряжения

Кроме образования реактивной мощности, на промышленных предприятиях существует такой негативный фактор, как выработка гармоник напряжения питающей сети.

Гармоники – это та часть спектра питающего напряжения, которая отличается частоты промышленной сети 50 Гц. Как правило, гармоники образуются на частотах, кратных основной. Таким образом, 1-я (основная) гармоника имеет частоту 50 Гц, 2-я – 100, 3-я – 150, и так далее.

Для измерения гармоник напряжения существует формула:

  • Кu – коэффициент нелинейных искажений, или THD (Total Harmonic Distortion),
  • U(1), U(2), и так далее – напряжение соответствующей гармоники, вплоть до 40-й.

Однако, эта формула не удобна на практике, поскольку не дает представления об уровне каждой гармонике в отдельности. Поэтому для практических целей используют формулу:

Коэффициент каждой гармоники напряжения

  • Кu(n) – коэффициент n-й гармонической составляющей спектра напряжения,
  • U(n) – напряжение n-й гармоники,
  • U(1) – напряжение 1-й гармоники

Таким образом, при измерении мы получим детальное распределение гармоник в спектре питающего напряжения, что позволит провести детальный анализ полученной информации и сделать правильные выводы.

На основе увеличения гармоник тока построен прибор для обмана счетчика. Кстати, там Автор прибора довольно убедительно доказал пользу своего изобретения)

Как измерить реактивную мощность?

Измерение реактивной мощности осуществляется с помощью специального прибора варметра, также можно определить косвенным методом с помощью ряда приборов вольтметра, амперметра, фазометра. Единица измерения реактивной мощности — вольт-ампер реактивный (вар)..

Как найти реактивную мощность?

Читайте также: