Схема s video sega

Обновлено: 05.07.2024


Автор Instructables под ником Dreamcazman придумал, как добавить к игровой консоли Sega Mega Drive (Genesis) гнёзда типа RCA («тюльпаны») и S-Video. Переделанную приставку можно подключать к телевизору стандартным кабелем, а не специализированным, который не всегда имеется под рукой.


Теперь же отвел очевиден: 3D-принтер. Файлы, необходимые для повторения этой накладки, а также показанного ниже шаблона, мастер выложил на Thingiverse .


Вообще он прикрепляет шаблон к корпусу:


Обклеивает со всех сторон малярным скотчем, после чего снимает шаблон, который теперь удобно хранить в корпусе переделанной приставки на случай, если захочется переделать ещё ощну.


Открывает корпус, временно снимает всю электронику, и вырезает отверстие под накладку:




Проверяет, помещается ли накладка:


Надев перчатки, немного дорабатывает помехозащитный экран:








Все разъёмы берёт с креплением на резьбе:


Устанавливает их на накладку:


Подключает «тюльпаны» так, как описано здесь , а S-Video - так, как здесь . У некоторых консолей чип другой, с которого отдельные сигналы для S-Video снять невозможно. Тогда целесообразно модифицировать STL-файл накладки, исключив отверстие для соответствующего разъёма.


Вот и готова переделанная Sega, которой удобнее пользоваться, а «весь этот тюнинг» выглядит так, как будто выполнен изначально на заводе. Старый разъём оставлен на месте, возможность пользования специализированным кабелем и модулятором сохранена.

Устройство для передачи видеосигнала

Предлагается рассмотреть возможность изготовления простого устройства для передачи видеосигнала (картинки) с кабельного или эфирного ресивера, DVD или Blu-Ray плейера, игровой приставки или видеокамеры на любой телевизор. Даже самой старой конструкции, имеющей только антенный вход. Также, практически без потери качества, этот видеосигнал можно раздать на несколько телевизоров. Причем, для этого не понадобятся специализированные WiFi или другие устройства для беспроводной раздачи сигнала. В этом случае будет достаточно отрезка обычного антенного кабеля. Конечно, программа на всех телевизорах будет одинакова (один источник сигнала), но в некоторых случаях эта возможность может оказаться полезной и экономически выгодной (например, для самодельной охранной системы или видеодомофона).
Самоделка выполнена в традиционном стиле – «из того, что было», т.е. с минимумом затрат.

В основе конструкции устройства лежит законченный блок высокочастотного (ВЧ) модулятора (RF- modulator), извлеченный в свое время из отжившего видеомагнитофона.

Модулятор (лат. modulator - соблюдающий ритм) - устройство, изменяющее параметры несущего сигнала в соответствии с изменениями передаваемого (информационного) сигнала. Этот процесс называют модуляцией, а передаваемый сигнал модулирующим (Википедия).
ВЧ модулятор преобразует рабочий низкочастотный сигнал (НЧ) в ВЧ сигнал, который без изменений можно подавать на антенный вход телевизора. Источником НЧ сигнала являются V (Video) и A (Audio) сигналы, воспроизводимые видеомагнитофоном, медиа проигрывателем, видеокамерой, цифровой видео приставкой или другими устройствами с аудио-видео выходами. В результате модуляции, в телевизоре (в UHF-диапазоне) появляется ещё один дециметровый канал, на котором транслируется передаваемый от источника сигнал. В таком виде, этот сигнал можно передавать по антенному кабелю на значительное расстояние по квартире, дому или между строениями. К ВЧ выходу можно подключить сплиттер, для разводки сигнала на несколько телевизоров.

Аналогично штатному режиму видеомагнитофона, мы используем в нашем устройстве, извлеченный ВЧ модулятор, для преобразования нужного нам НЧ сигнала в ТВ ВЧ сигнал. Далее мы можем подать преобразованный сигнал на телевизор (или несколько), у которого отсутствует видеовход, через антенный кабель.

Например, на телевизор такой конструкции.



Переносной мини телевизор Brown BR-2201 с AM/FM радио. Диагональ экрана 5,5 дюйма (13,97 см). Имеется выход на наушники, гнездо под обычную ТВ антенну или кабельное ТВ. Имеет возможность питания от комплекта батареек, бортовой сети автомобиля или от сети 230 вольт через адаптер питания 230/12V (1А).

Плюсы использования этого телевизора:
- мобильность и малые размеры;
- незначительное энергопотребление;
- возможность использования устаревшего оборудования, вместо его утилизации.

Минусы:
- малый размер экрана;
- черно-белое изображение.

Применение:
- в любом уголке на кухне, в гараже;
- при дежурном характере работы;
- в охранных устройствах видеонаблюдения.

Устройство ВЧ-модулятора

Посмотрим, как устроен ВЧ модулятор и возможность его использования.
ВЧ модулятор выполнен в виде законченного блока заключенного в экранирующий сборный металлический корпус, соединенный с общим проводом и отрицательным полюсом источника питания.

На лицевой стороне блока расположены антенные разъемы TV-IN (подключение ТВ-антенны) и TV-OUT (подсоединение к телевизору). Кроме того, на лицевой стороне размещены переключатели ТВ системы - PAL B/G или PAL D/K и винт регулировки (настройки) частоты транслируемого канала. С бокового выхода, через экранированный провод, сигнал поступает на ТВ тюнер видеомагнитофона.




Вот как ВЧ модулятор выглядит на задней панели видеомагнитофона.



ВЧ модуляторы в видеомагнитофонах различных фирм имеют некоторые конструктивные и компоновочные различия, но их принцип работы идентичен.



Если снять крышки-экраны с обеих сторон блока, увидим внутреннее устройство модулятора.



Устройство разделено экранирующей перегородкой на две, независимые по питанию, части.
В половине, со стороны антенных разъемов, изготовлен на высокочастотном и малошумящем транзисторе активный антенный усилитель, с питанием 12 В. Он компенсирует потери, образующиеся на ферритовом трансформаторе – сумматоре, при преобразовании видеосигнала.
В другой половине модулятора находится преобразователь на специальном чипе. Он перестраивает НЧ сигналы V (Video) и A (Audio) в телевизионный формат и отправляет их на усилитель. Модели микросхемы могут быть различные, в зависимости от производителя. Питание микросхемы 5 В.

Питание (5V, 12V) и НЧ сигналы (V, А) подаются на вход ВЧ модулятора через выводы, запаянные в печатную плату. Названия контактов обычно приведены на плате модулятора (см. выше - фото вариантного модулятора).

Изготовление ВЧ-модулятора

1. Комплектация устройства
Основной элемент устройства (ВЧ-модулятор) мы рассмотрели. Для изготовления конструкции устройства остается добавить разъемы под «тюльпан» для подключения НЧ сигналов (один для Video и два для Audio – R, L) и разъем для подвода питания 12V.

Желательно подобрать корпус для размещения элементов и удобства пользования. В данном случае использован, подходящий по размерам, пластмассовый корпус выключателя сигнализации.



2. Изготовление корпуса для устройства.
Освободим корпус выключателя от содержимого, разметим и обработаем необходимые отверстия в соответствии с входами и выходами имеющегося блока ВЧ модулятора. Имеющиеся конструктивные элементы корпуса используем для установки и закрепления новых элементов устройства.




3. Сборка устройства.
Установим в корпус блок ВЧ модулятора, три разъема под «тюльпан» для подключения НЧ сигналов и разъем для подвода питания.
Так как в настоящее время, практически вся аппаратура передает аудио сигнал в стерео формате (Audio – R, L), установим для этого два разъема. Объединим их центральные выводы, двумя последовательно соединенными резисторами по 47кОм. Среднюю точку соединения резисторов подключим к «А» выводу на панели ВЧ модулятора. Таким образом, мы равномерно нагрузим оба выходных канала аудио источника.

Вывод «V» (Video) соответственно подключаем к разъему устройства «Видео». Подключение выводов выполняем пайкой с помощью минимально коротких проводников.



К установленному разъему питания подключаем соответствующие контакты ВЧ модулятора. Контактом +12V обычно является крайний вывод «ВВ», но лучше проверить это, проследив по дорожкам путь от контакта к блоку антенного усилителя.

Питание для чипа +5V получим с делителя на резисторах 220/160 Ом, распаянного на контактах разъема питания. Контактом для «-12V» и «-5V» будет общий провод.

Источником питания 12V может служить сетевой адаптер 230/12 V (0,5А). В приведенном варианте устройства используется штатный сетевой адаптер применяемого телевизора.

Собираем все элементы устройства в корпус.



5. Тестирование устройства.
Так как «эфирное» аналоговое ТВ перешло на «цифру», то для тестирования устройства, в качестве источника сигнала, используем цифровую приставку. Подключаем к ранее настроенной на каналы приставке ТВ антенну, соединяем с тестируемым устройством кабелем с «тюльпанами» по НЧ, включаем питание ТВ приставки.

Антенный вход телевизора соединен кабелем с разъемом «TV-OUT» модулятора и включено его питание.
Выполняем поиск и настройку транслируемого канала на телевизоре.


Plane B — плоскость фона. Отображает тайловую графику при помощи тайловых карт.

Plane A — плоскость переднего плана. Отображает тайловую графику при помощи тайловых карт. Window subplane — подплоскость для Plane A, графика которой не скроллится с остальной плоскостью.

Каждая строка тайлов рендерится столбец за столбцом. Тайлы на каждой плоскости могут иметь приоритет: высокий или низкий.


Тайлы для спрайта, отрендеренные в обычном формате (4x4 тайла)

1 спрайтовая плоскость

Отрисовывает спрайтовую тайловую графику.

Внутри консоли спрайты рендерятся в обратном порядке, т.е. каждый столбец тайлов рендерится по строкам.

Спрайты располагаются в виртуальном пространстве 512x512 пикселей, где координаты (128,128) совпадают с верхним левым углом телеэкрана.

Genesis одновременно может отображать на экране до 80 аппаратных спрайтовGenesis может отображать примерно 20 спрайтов в одной растровой строке, при большем количества возникают проблемы с переполнением спрайтов и они перестают отображаться.

Для аппаратных спрайтов размеры ограничены (w x h), где w — ширина, h — высота, принимающие значения 1-4 тайла.

Спрайты больше размеров аппаратных спрайтов можно получить при помощи нескольких спрайтов.

Как и в случае с плоскостями, тайлы для спрайтов могут иметь низкий или высокий приоритет. Спрайты с низким приоритетом отображаются под тайлами с высоким приоритетом других слоёв. (На самом деле всё немного сложнее, но в целом концепция такова).


Тайлы для спрайта внутри консоли рендерятся в спрайтовом формате (перемещённые и размером 4x4 тайла)


Наглядное представление приоритета слоёв плоскостей
Источник: Genesis Software Manual

VDP CRAM ("Color RAM" — «цветовое ОЗУ»)

4 строки палитр, в каждой из которых 16 цветов

Каждый цвет имеет глубину 4bpp (4 бита на пиксель)

Первый цвет — это прозрачный цвет графики тайлов

Строки палитр могут рендериться в слегка более светлых или тёмных цветах при включении режимов highlight или shadow


Sega Genesis имеет 2 плоскости тайловых карт: плоскость фона («Plane B») и плоскость переднего плана («Plane A»). В зависимости от типа машины (NTSC или PAL) и используемого видеорежима (H40 или H32), полноэкранная тайловая карта будет занимать в ширину 32 или 40 тайлов и в высоту 28 или 30 тайлов. Каждый тайл состоит из изображения размером 8x8 пикселя, а каждый пиксель соответствует индексу цвета (0-15). Строго говоря, window plane является подплоскостью Plane A; её графика не скроллится с остальной частью Plane A. Плоскости можно использовать множеством разных способов, например, для полноэкранных слоёв переднего плана и фона, или для техники, которой знамениты многие игры для Sega Genesis: параллаксного скроллинга. Выполняя скроллинг отдельных строк тайлов на плоскостях с разной скоростью, можно создать иллюзию глубины. Тайлы на тайловых картах разных плоскостей могут иметь параметр приоритета: высокого или низкого. Этот параметр определяет, где должны отображаться спрайты (которые тоже имеют высокий или низкий приоритет), под тайлом, или над ним.







VSRAM (Video Scroll RAM — видеопамять скроллинга)

Слои Plane A и Plane B могут иметь тайловые карты плоскостей скроллинга размером (w x h), где w — ширина в тайлах, h — высота в тайлах. Каждый из размеров может быть равен только 32, 64, или 128 тайлам. Эти плоскости скроллинга «прокручиваются внутрь/наружу» активного разрешения экрана (размер определяется типом машины и режимом H32/H40). Плоскости скроллинга размерами 128x64/64x128 и 128x128 недопустимы. По умолчанию части VRAM по стандартным адресам VRAM 0xC000 и 0xE000 отображаются как «мусорные тайлы», но на самом деле каждый пиксель в этих «мусорных тайлах» компактным образом кодирует тайловую карту VSRAM. Пользователь никогда не должен записывать в эти «мусорные тайлы» настоящие тайлы, иначе возникнут странные графические баги/сбои, замедления, или мусорные тайлы начнут отображаться на плоскостях скроллинга. Плоскости могут использовать 1 из 3 режимов скроллинга: по растровой строке, по тайлу, или по блоку (секции из 2x2 тайлов). Каждая плоскость может скроллиться одновременно по горизонтали и вертикали.

Тайлы одновременно могут использовать только 1 из 4 строк палитр. Каждая строка палитры содержит 16 цветов. Первый цвет зарезервирован под прозрачный цвет, который рекомендуется делать розовым (255,0,255) (RGB). Чтобы сохранять в игре целостность стиля, для отдельных элементов можно выделить 1 или 2 палитры. Например, строка палитры 1 может использоваться для персонажа игрока, а строка палитры 2 — для элементов UI. Для отрисовки врагов, фонов и других изменяющихся элементов можно использовать различные палитры.


Для оптимального использования цвета на этом скриншоте применяется две палитры, по одной для каждого слоя плоскости тайловых карт. Два первых изображения — это отдельные слои (Plane B и Plane A), а третье — готовое полноэкранное изображение, на котором обе плоскости объединены. Так как каждый тайл одновременно может использовать индексированные цвета только из одной строки палитры, применение такой схемы изображения с двумя плоскостями позволяет обеспечить количество цветов, недоступное для изображения с одной плоскостью.

Существуют две популярные техники работы с палитрами — циклическая смена палитр (palette cycling) и растровые эффекты (raster effects). Благодаря смене цвета определённых элементов в отдельной строке палитры каждые несколько кадров можно реализовать такие эффекты, как водопад, пульсирующее освещение, и так далее.

Пример эффекта циклической смены палитр для мерцающих полос Берсерка в Zombie Football League



Растровые эффекты заменяют все или некоторые цвета строки палитры после определённой растровой строки. Мы не будем подробно рассматривать эту технику, но по сути она заключается в замене части всех цветов CRAM после прохождения электронного луча телевизора определённой горизонтальной строки развёртки. Эта техника полезна для реализации смены палитр для объектов, находящихся под водой. В частности, она используется для подводных цветов уровня Labyrinth Zone в игре Sonic the Hedgehog.


Спрайты


Спрайт позы Эшли из Coffee Crisis

Спрайты в Sega Genesis задаются как изображения с размером (w x h), где w — ширина в тайлах, а h — высота в тайлах, которые могут принимать значения 1-4 тайлов. Каждый спрайт одновременно может использовать только одну строку палитры. Аппаратные спрайты могут иметь максимальный размер 4x4 тайлов. Sega Genesis может обрабатывать до 80 экранных спрайтов, по 20 спрайтов на одну растровую строку, однако чтобы избегать тормозов, лучше не достигать этого предела. Чтобы обойти ограничение на размеры аппаратных спрайтов, многие игры используют несколько спрайтов, собирая из них одного персонажа/объект. Принцип создания классического пиксель-арта заключается в том, чтобы выбрать достаточно большое разрешение для обеспечения нужной детализации и читаемости изображения, но достаточно малое, чтобы его можно было легко анимировать. Вся графика тайлов Sega Genesis всегда должна делиться на 8 пикселей, чтобы соответствовать размерам тайлов. Спрайты могут зеркально отображаться по горизонтали («hflip») и/или по вертикали («vflip»), а также иметь флаг высокого или низкого приоритета. Этот параметр определяет, должен и спрайт отображаться под или над тайлами других плоскостей (которые также имеют параметр высокого или низкого приоритета). Аппаратные спрайты также могут иметь значение «link»; каждый спрайт должен иметь собственное уникальное значение link. Среди прочего, оно влияет на отрисовку: спрайты с низкими значениями link отрисовываются поверх спрайтов с высокими значениями link.

Анимация


Бегущий бронированный минотавр-футболист из Zombie Football League

В большинстве игр графика анимируется, а не является простыми статичными спрайтами. Постепенно изменяя кадры спрайтов, можно создать иллюзию движения, и использовать её для отображения ходьбы, атак и так далее. Художникам игр для Sega Genesis необходимо было помнить о количестве спрайтов и тайлов каждой анимации, чтобы слишком большое количество не привело к замедлению игры. Создание анимации спрайтов часто превращается в поиск компромисса между стремлением к низкому количеству спрайтов и созданием убедительного движения; особенно это относится к анимациям на Sega Genesis.

Сегодня среди разработчиков ROM-хаков Sonic the Hedgehog распространена техника под названием "Dynamic Pattern Load Cues" (DPLC). Она заключается в динамической загрузке тайлов для спрайтов во VRAM на лету вместо хранения всех тайлов для кадров спрайтов во VRAM одновременно. Очень часто детализированные спрайты (например, спрайты главного героя), занимают слишком большое количество тайлов во VRAM, используемых для кадров спрайтов. Если загружать в видеопамять только те тайлы, которые необходимы для текущего отрисовываемого кадра спрайта, можно экономить ограниченную память VRAM и занять её другой тайловой графикой. К сожалению, тайлы, используемые для DPLC, необходимо распаковывать в ROM, чтобы загрузка во VRAM была быстрой и не замедляла игру. (Распаковка сжатой графики тратит ресурсы процессора и занимает слишком много его циклов.) Функции спрайтового движка SGDK (в файле заголовка <sprite_eng.h>) обычно используют техники DPLC для вырезания неиспользуемых тайлов.


Рекомендуемые инструменты для отладки и создания графики

Поиск хорошего ПО для создания ретро-графики, разделения пиксель-арта на тайлы и снижение количества цветов до 4bpp может оказатся сложной задачей. Ниже представлен список рекомендуемого ПО для создания ретро-графики, а также специализированных эмуляторов, позволяющих пользователю изучать содержимое VRAM и плоскостей.

Игры для SEGA GENESIS, которые стоит изучить


Существует множество красивых игр для Sega Genesis, из которых можно почерпнуть различные техники и спецэффекты. В том числе:

Для того, чтобы собрать такой джойстик, нам понадобиться сам джойстик от Sega MegaDrive-2 и USB клавиатура.




1. Покупаем клавиатуру и джойстик
Клавиатуру я взял самую дешевую, которую нашел, так как от нее нам понадобиться только контроллер с USB проводом:


2. Разбираем клавиатуру и джойстик


3. Нам нужно выбрать кнопки на клавиатуре, которые мы будем использовать

Определяем по дорожкам, какие контакты на контроллере нужно замыкать для каждой из кнопок.
Подробно описывать не буду, так как платы клавиатур отличаются распиновкой контактов.

[W], [A], [S], [D] — Вверх, Влево, Вниз, Вправо;
[J,] [K], [L], [U], [I], [O] — A, B, C, X, Y, Z;
[E] — Start;
[F5] — Mode (буду использовать для быстрого сохранения).


4. Отпаиваем провод от джойстика


5. Припаиваем к контроллеру провода


6. Обрезаем ненужные дорожки на плате джойстика и просверливаем отверстия, чтобы припаять провода от контроллера


7. Припаиваем контроллер


8. Всю полученную конструкцию запихиваем в корпус джойстика


9. Подключаем
Устанавливаем эмулятор сеги, например, GENS и указываем в настройках клавиши.






10. Играем
Проверив джойстик на компьютере, я подключил его к планшету. На него я установил эмулятор GENPlusDroid. На планшете играть оказалось даже удобнее.


В итоге получился универсальный джойстик за небольшие деньги, который работает как на PC, так и на планшете.
Удобно взять собой в дорогу и играть в пути с друзьями. Для этих целей я таким же образом собрал второй джойстик (просто выбрав другие кнопки клавиатуры).

Читайте также: