На узкую щель падает нормально монохроматический свет его направление на четвертую темную 2 12

Обновлено: 03.07.2024

16.21. Установка для получения колец Ньютона освещается монохроматическим светом с длиной волны λ= 500 нм. падающим по нормали к поверхности пластинки. Пространство между линзой и стеклянной пластинкой заполнено водой. Найти толщину h слоя воды между линзой и пластинкой в том месте, где наблюдается третье светлое кольцо в отраженном свете.

16.22. Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. После того как пространство между линзой и стеклянной пластинкой заполнили жидкостью, радиусы темных колец в отраженном свете уменьшились в 1,25 раза. Найти показатель преломления жидкости.

16.23. В опыте с интерферометром Майкельсона для смещения интерференционной картины на k = 500 полос потребовалось переместить зеркало на расстояние L = 0,161мм. Найти длину волны λпадающего света.

16.24. Для измерения показателя преломления аммиака в одно из плечей интерферометра Майкельсона поместили откачанную трубку длиной l = 14см. Концы трубки закрыли плоскопараллельными стеклами. При заполнении трубки аммиаком интерференционная картина для длины волны λ= 590нм сместилась на k = 180 полос. Найти показатель преломления n аммиака.

16.25. На пути одного из лучей интерферометра Жамена (см. рисунок) поместили откачанную трубку длиной l = 10 см. При заполнении трубки хлором интерференционная картина для длины волны λ = 590 нм сместилась на k= 131 полосу. Найти показатель преломления n хлора.

16.26. Пучок белого света падает по нормали к поверхности стеклянной пластинки толщиной d = 0,4 мкм. Показатель преломления стекла n = 1,5. Какие длины волн λ , лежащие в пределах видимого спектра (от 400 до 700 нм), усиливаются в отраженном свете?

16.27. На поверхность стеклянного объектива (n1 = 1,5) нанесена тонкая пленка, показатель преломления которой n2 = 1,2 («просветляющая» пленка). При какой наименьшей толщине d этой пленки произойдет максимальное ослабление отраженного света в средней части видимого спектра?

16.28. Свет от монохроматического источника (λ = 600 нм) падает нормально на диафрагму с диаметром отверстия d = 6мм. За диафрагмой на расстоянии l = 3м от нее находится экран. Какое число kзон Френеля укладывается в отверстие диафрагмы? Каким будет центр дифракционной картины на экране: темным или светлым?

16.29. Найти радиусы rkпервых пяти зон Френеля, если расстояние от источника света до волновой поверхности a = 1 м, расстояние от волновой поверхности до точки наблюдения b = 1м. Длина волны света λ = 500 им.

16.30. Найти радиусы rkпервых пяти зон Френеля для плоской волны, если расстояние от волновой поверхности до точки наблюдения b = 1 м. Длина волны света λ = 500 нм.

16.31. Дифракционная картина наблюдается на расстоянии l от точечного источника монохроматического света (λ = 600 нм). На расстоянии а = 0,5l от источника помещена круглая непрозрачная преграда диаметром D = 1 см. Найти расстояние /, если преграда закрывает только центральную зону Френеля.

16.32. Дифракционная картина наблюдается на расстоянии l = 4м от точечного истопника монохроматического света (λ = 500нм). Посередине между экраном и источником света помещена диафрагма с круглым отверстием. При каком радиусе R отверстия центр дифракционных колец, наблюдаемых на экране, будет наиболее темным?

16.33. На диафрагму с диаметром отверстия D = 1,96 мм падает нормально параллельный пучок монохроматического света (λ = 600нм). При каком наибольшем расстоянии l между диафрагмой и экраном в центре дифракционной картины еще будет наблюдаться темное пятно?

16.34. На щель шириной a = 2 мкм падает нормально параллельный пучок монохроматического света (λ = 589 нм). Под какими углами φ будут наблюдаться дифракционные минимумы света?

16.35. На щель шириной а = 20 мкм падает нормально параллельный пучок монохроматического света (λ = 500нм). Найти ширину А изображения щели на экране, удаленном от щели на расстояние l = 1 м. Шириной изображения считать расстояние между первыми дифракционными минимумами, расположенными по обе стороны от главного максимума освещенности.

16.36. На щель шириной а = 6λ падает нормально параллельный пучок монохроматического света с длиной волны λ. Под каким углом φбудет наблюдаться третий дифракционный минимум света?

16.37. На дифракционную решетку падает нормально пучок света. Для того чтобы увидеть красную линию (λ = 700 нм) в спектре этого порядка, зрительную трубку пришлось установить под утлом φ = 30° к оси коллиматора. Найти постоянную дифракционной решетки. Какое число штрихов N0 нанесено на единицу длины этой решетки?

16.38. Какое число штрихов N0 на единицу длины имеет дифракционная решетка, если зеленая линия ртути (λ = 546.1 нм) в спектре первого порядка наблюдается под углом φ = 19°8' ?

16.39. На дифракционную решетку нормально падает луч света. Натриевая линия (λ1 = 589 нм) дает в спектре первого порядка угол дифракции φ1 = 17°8'. Некоторая линия спектре второго порядка дифракции φ2 = 24°12'. Найти длину волны λ2 этой линии и число штрихов N0 на единицу деления решетки.

16.40. На дифракционную решетку нормально падает пучок света от разрядной трубки. Какова должна быть постоянная d дифракционной решетки, чтобы в направлении φ = 41° совпадали максимумы линий λ1 = 656.3 нм и λ2 = 4 10.2 нм?

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами - загрузи их здесь!

Узкая щель шириной 0,1 мм освещена монохроматическим светом (л = 0,5 мкм) и рассматривается наблюдателем, находящимся за щелью.

Готовое решение: Заказ №8379

Узкая щель шириной 0,1 мм освещена монохроматическим светом (л = 0,5 мкм) и рассматривается наблюдателем, находящимся за щелью.

Тип работы: Задача

Узкая щель шириной 0,1 мм освещена монохроматическим светом (л = 0,5 мкм) и рассматривается наблюдателем, находящимся за щелью.

Статус: Выполнен (Зачтена преподавателем ВУЗа)

Узкая щель шириной 0,1 мм освещена монохроматическим светом (л = 0,5 мкм) и рассматривается наблюдателем, находящимся за щелью.

Предмет: Физика

Узкая щель шириной 0,1 мм освещена монохроматическим светом (л = 0,5 мкм) и рассматривается наблюдателем, находящимся за щелью.

Дата выполнения: 28.08.2020

Узкая щель шириной 0,1 мм освещена монохроматическим светом (л = 0,5 мкм) и рассматривается наблюдателем, находящимся за щелью.

Цена: 209 руб.

Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.

Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!

Описание и исходные данные задания, 50% решения + фотография:

№1-3 31. Узкая щель шириной 0,1 мм освещена монохроматическим светом (л = 0,5 мкм) и рассматривается наблюдателем, находящимся за щелью. Что видит глаз наблюдателя, если луч зрения образует с нормалью к плоскости щели угол 17`?

Пусть на щель шириной падает монохроматический свет с длиной волны . Чтобы можно было наблюдать дифракционную картину, за щелью помещают собирающую линзу (Л), в фокальной плоскости которой размещается экран. Пусть направление взгляда наблюдателя, расположенного за щелью, составляет с нормалью к плоскости щели угол ф. Нам надо определить, что (максимум или минимум) будет наблюдаться на экране под этим углом.

Узкая щель шириной 0,1 мм освещена монохроматическим светом (л = 0,5 мкм) и рассматривается наблюдателем, находящимся за щелью.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

На узкую щель падает нормально монохроматический свет. Угол отклонения лучей, соответствующих второй светлой ди¬фракционной полосе, равен 1. Скольким длинам волн падающего света равна ширина щели?

Готовое решение: Заказ №8379

На узкую щель падает нормально монохроматический свет. Угол отклонения лучей, соответствующих второй светлой ди¬фракционной полосе, равен 1. Скольким длинам волн падающего света равна ширина щели?

Тип работы: Задача

На узкую щель падает нормально монохроматический свет. Угол отклонения лучей, соответствующих второй светлой ди¬фракционной полосе, равен 1. Скольким длинам волн падающего света равна ширина щели?

Статус: Выполнен (Зачтена преподавателем ВУЗа)

На узкую щель падает нормально монохроматический свет. Угол отклонения лучей, соответствующих второй светлой ди¬фракционной полосе, равен 1. Скольким длинам волн падающего света равна ширина щели?

Предмет: Физика

На узкую щель падает нормально монохроматический свет. Угол отклонения лучей, соответствующих второй светлой ди¬фракционной полосе, равен 1. Скольким длинам волн падающего света равна ширина щели?

Дата выполнения: 28.08.2020

На узкую щель падает нормально монохроматический свет. Угол отклонения лучей, соответствующих второй светлой ди¬фракционной полосе, равен 1. Скольким длинам волн падающего света равна ширина щели?

Цена: 209 руб.

Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.

Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!

Описание и исходные данные задания, 50% решения + фотография:

№1 Условие 1 5.13. На узкую щель падает нормально монохроматический свет. Угол отклонения лучей, соответствующих второй светлой ди¬фракционной полосе, равен 1. Скольким длинам волн падающего света равна ширина щели? Условие 2 2.40. На узкую щель падает нормально монохроматический свет. Угол ф отклонения пучков света, соответствующих второй светлой дифракционной полосе, равен 1°. Скольким длинам волн падающего света равна ширина щели? Условие 3 5.13. На узкую щель падает нормально монохроматический свет. Угол отклонения лучей, соответствующих второй светлой ди¬фракционной полосе, ф = 1. Скольким длинам волн падающего света равна ширина щели? Условие 4 513. На узкую щель падает нормально монохроматический свет. Угол ф отклонения пучков света, соответствующих второй светлой дифракционной полосе, равен 1°. Скольким длинам волн л падающего света равна ширина a щели?

Условие главных максимумов при дифракции на щели: , где – ширина щели; – угол, под которым наблюдается максимум; – порядок максимума. Отсюда выразим отношение ширины щели к длине волны: ;

На узкую щель падает нормально монохроматический свет. Угол отклонения лучей, соответствующих второй светлой ди¬фракционной полосе, равен 1. Скольким длинам волн падающего света равна ширина щели?

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

41. Определите длину отрезка l1, на котором укладывается столько же длин волн монохроматического света в вакууме, сколько их укладывается на отрезке l2 = 5 мм в стекле. Показатель преломления стекла n = 1,5.

42. Два параллельных световых пучка, отстоящих друг от друга на расстоянии d = 5 см, падают на кварцевую призму (n = 1,49) с преломляющим углом α = 25° . Определите оптическую разность хода d этих пучков на выходе их из призмы.

43. В опыте Юнга расстояние между щелями d = 1 мм, а расстояние l от щелей до экрана равно 3 м. Определите: 1) положение первой светлой полосы; 2) положение третьей темной полосы, если щели освещать монохроматическим светом с длиной волны λ = 0,5 мкм.

44. В опыте с зеркалами Френеля расстояние d между мнимыми изображениями источника света равно 0,5 мм, расстояние l от них до экрана равно 5 м. В желтом свете ширина интерференционных полос равна 6 мм. Определите длину волны желтого света.

45. Расстояние между двумя щелями в опыте Юнга d = 0,5 мм (λ = 0,6 мкм). Определите расстояние l от щелей до экрана, если ширина Δх интерференционных полос равна 1,2 мм.

46. В опыте Юнга расстояние l от щелей до экрана равно 3 м. Определите угловое расстояние между соседними светлыми полосами, если третья световая полоса на экране отстоит от центра интерференционной картины на 4,5 мм.

47. Если в опыте Юнга на пути одного из интерферирующих лучей поместить перпендикулярно этому лучу тонкую стеклянную пластинку (n = 1,5), то центральная светлая полоса смещается в положение, первоначально занимаемое пятой светлой полосой. Длина волны λ = 0,5 мкм. Определите толщину пластинки.

48. Определите, во сколько раз изменится ширина интерференционных полос на экране в опыте с зеркалом Френеля, если фиолетовый светофильтр (0,4 мкм) заменить красным (0,7 мкм).

49. Расстояние от бипризмы Френеля до узкой щели и экрана соответственно равно a = 30 см и b = 1,5 м. Бипризма стеклянная (n = 1,5) с преломляющим углом ν = 20'. Определите длину волны света, если ширина интерференционных полос Δx = 0,65 мм.

50. Расстояние от бипризмы Френеля до узкой щели и экрана соответственно равно a = 48 см и b = 6 м. Бипризма стеклянная (n = l,5) с преломляющим углом ν = 10'. Определите максимальное число полос, наблюдаемых на экране, если λ = 600 нм.

51. На плоскопараллельную пленку с показателем преломления n = 1,33 под углом i = 45° падает параллельный пучок белого света. Определите, при какой наименьшей толщине пленки зеркально отраженный свет наиболее сильно окрасится в желтый цвет (λ = 0,6 мкм).

52. На стеклянный клин (n = 1,5) нормально падает монохроматический свет (λ = 698 нм). Определите угол между поверхностями клина, если расстояние между двумя соседними интерференционными минимумами в отраженном свете равно 2 мм.

53. На стеклянный клин (n = 1,5) нормально падает монохроматический свет. Угол клина равен 4'. Определите длину световой волны, если расстояние между двумя соседними интерференционными максимумами в отраженном свете равно 0,2 мм.

54. На тонкую мыльную пленку (n = 1,33) под углом i = 30° падает монохроматический свет с длиной волны λ = 0,6 мкм. Определите угол между поверхностями пленки, если расстояние b между интерференционными полосами в отраженном свете равно 4 мм.

55. Монохроматический свет падает нормально на поверхность воздушного клина, причем расстояние между интерференционными полосами Δx1 = 0,4 мм. Определите расстояние Δx2 между интерференционными полосами, если пространство между пластинками, образующими клин, заполнить прозрачной жидкостью с показателем преломления n = 1,33.

56. Плосковыпуклая линза радиусом кривизны 4 м выпуклой стороной лежит на стеклянной пластинке. Определите длину волны падающего монохроматического света, если радиус пятого светлого кольца в отраженном свете равен 3 мм.

57. Установка для наблюдения колец Ньютона освещается монохроматическим светом с длиной волны λ = 0,55 мкм, падающим нормально. Определите толщину воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой в том месте, где в отраженном свете наблюдается четвертое темное кольцо.

58. Установка для наблюдения колец Ньютона освещается монохроматическим светом с длиной волны λ = 0,6 мкм, падающим нормально. Пространство между линзой и стеклянной пластинкой заполнено жидкостью, и наблюдение ведется в проходящем свете. Радиус кривизны линзы R = 4 м. Определите показатель преломления жидкости, если радиус второго светлого кольца r = 1,8 мм.

59. Плосковыпуклая линза с показателем преломления n = 1,6 выпуклой стороной лежит на стеклянной пластинке. Радиус третьего светлого кольца в отраженном свете (λ = 0,6 мкм) равен 0,9 мм. Определите фокусное расстояние линзы.

60. Плосковыпуклая линза с радиусом сферической поверхности R = 12,5 см прижата к стеклянной пластинке. Диаметр десятого темного кольца Ньютона в отраженном свете равен 1 мм. Определите длину волны света.

61. Установка для наблюдения колец Ньютона освещается монохроматическим светом, падающим нормально. При заполнении пространства между линзой и стеклянной пластинкой прозрачной жидкостью радиусы темных колец в отраженном свете уменьшились в 1,21 раза. Определите показатель преломления жидкости.

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами - загрузи их здесь!

Читайте также: