Уравнение гармонических колебаний когда sin когда cos

Обновлено: 07.07.2024

В любом случае, синус-закон и косинус-закон выполняется при гармонических колебаниях. Но, чтобы выбрать по какому именно закону изменяется величина, нужно знать ее начальное состояние. Если в момент времени Т=0 величина максимальна, то она изменяется по закону косинуса ( пример - напряжение катушки индуктивности в цепи переменного тока U=UmaxCosωt. Если в момент времени величина минимальна ( пример - зависимость cмещения точки от времени - X=XmaxSinωt. )

Новые вопросы в Физика

РЕБЯТ СРОЧНО ПОМОГИТЕ ПОЖАЛУЙСТАчому дорівнює струм, який проходить через лампочку?1) 0,5 Ом2) 0,5 А3) 120 А4) 240 Ом​

Чому дорівнює доцентрове прискорення точок автомобіля, які дотикаються до дороги, якщо авто рухається зі швидкістю 96км/год, а колесо робить 540 оберт … ів за хвилину ​

Снаряд, выпущенный вертикально вверх со скоростью 200 м/с, разрывается в верхней точке траектории на два осколка. Первый осколок после взрыва летит ве … ртикально вниз и достигает земли через 10 секунд. Определите скорость второго осколка, если его масса в 1,5 раза больше массы первого осколка. Сопротивлением воздуха пренебречь.

Срочно мені потрібно Де в промисловості використовується синусодального змінного струм та якої напруги​

дам 50 баллов! Два мальчика стоят на расстоянии 4,8м друг от друга. Один мальчик бросает вертикально вверх спичечный коробок со скоростью 6м/с. Второй … мальчик стреляет из рогатки камешком так, что камешек попадает в коробок, находящийся в верхней точке своей траектории. С какой скоростью камешек вылетел из рогатки?​

Помогите пж с лабораторной. Срочно даю 100балов 1)нужно описать , что происходит в опыте 2) описать движение с помощью законов Ньютона составить и … решить задачу и сделать вывод

Срочно мені потрібно Де в промисловості використовується синусодального змінного струм та якої напруги​

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

xmax— амплитуда [м]

t — момент времени [с]

2πνtв этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

xmax— амплитуда [м]

t — момент времени [с]

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.


пример колебаний

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

  • В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линии.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.


период колебаний

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника


формула пириода колебаний

l — длина нити [м]

g — ускорение свободного падения [м/с^2]

На планете Земля g = 9,8 м/с2

I. Механика

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле


График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.


Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса



Если колебание описывать по закону синуса



Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

  • Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение характеризуется величинами: период, частота, амплитуда, фаза колебаний.

Формула периода колебаний

T = t/N

N — количество колебаний [-]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [-]

  • Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо xmax.

Она используется в уравнении гармонических колебаний:


амплитуда

Уравнение гармонического колебания величина стоящая под знаком косинуса называется

ужнеужели

Уравнение гармонических колебаний x = x m cos (ωt + φ0) . То, что находится, называется фазой колебаний, причем, фаза в момент времени t=0, то есть фи нулевое, называется начальной фазой колебаний. х с индексом m - амплитуда (максимальное отклонение от точки равновесия)
ω - читается омега - циклическая (по-русски круговая) частота колебаний

Новые вопросы в Английский язык

Mother: What (you, think) about right now? Father: I (think) about seagulls and waves. Mother: (you, like) seagulls? Father: Yes. I (think) seagulls a … re interesting birds. Mother: Which color (you, prefer) , red or blue? Father: I (like) blue better than red. Why? Mother: I (read) a magazine article right now. According to the article, people who (prefer) blue to red (be) calm and (value) honesty and loyalty in their friends. A preference for red (mean) that a person (be) aggressive and (love) excitement. Father: Oh? That (sound) like a bunch of nonsense to me.

роль семьи в обществе. подайте хоть идею, мне сочинение писать​

ПОМОГИТЕ СРОЧНО СДЕЛАТЬ ТАБЛИЦУ. ЗАРАНЕЕ СПАСИБО ОГРОМНОЕ!

Можно краткий пересказ текста, основной мысли, в 3-4 предложениях, срочно надо

Как получить зависимости v(t) и a(t)

Формулы зависимостей скорости от времени и ускорения от времени можно получить математически, зная зависимость координаты от времени. Аналогично равноускоренному движению, зависимость v(t) - это первая производная x(t). А зависимость a(t) - это вторая производная x(t).

При нахождении производной предполагаем, что переменной (то есть x в математике) является t, остальные физические величины воспринимаем как постоянные.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.


часы с маятником

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени


График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Гармонические колебания


Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника


формула колебаний пружинного маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Читайте также: