Pwm frequency control что это

Обновлено: 04.07.2024

Непонимание работы ШИМ или PWM ( Pulse-width modulation ) часто приводит не только к их неправильному использованию, но даже к ошибкам в проектировании устройств использующих ШИМ для управления. Здесь, ограничившись конкретным применением, я попытаюсь рассказать что такое ШИМ, для чего она требуется и как работает.

Сначала, что такое ШИМ.
Когда нужна ШИМ

Главной причиной применения ШИМ является необходимость обеспечить пониженным постоянным напряжением силовых устройств электроники при сохранении высокого КПД, особенно в управляемых электроприводах.

Во внутренних сетях аппаратуры для питания устройств используется постоянное напряжение ограниченного набора напряжений, которые часто требуется изменить под требования конкретного устройства, стабилизировать или регулировать его. Это могут быть электроприводы постоянного тока, чипы, узлы радиоаппаратуры.

Регулировку можно осуществлять с помощью гасящих напряжение устройств: резисторов, транзисторов (если требуется регулировка). Главный недостаток такого решения потери мощности и повышенное тепловыделение на регулирующих устройствах.

Поскольку известно что выделяемая мощность равна :

P = I x U или P = I 2 x R Вт.

то чем больше ток I в цепи и падение напряжения U , тем больше потери мощности. Здесь R - величина сопротивления регулирующего элемента.

Представьте что требуется погасить хотя бы 3 V при токе нагрузки 10 A , это уже 30 Вт истраченных в пустую. А каждый ватт теряемой мощности не только снижает продолжительность работы источников питания, но и требует дополнительного оборудования для вывода выделяемого, этой мощностью, тепла.

Это относится к гасящим резисторам и полупроводниковым приборам тоже.

Но хорошо известно, что полупроводниковые приборы очень хорошо (с малыми потерями и тепловыделением) работают как ключи, когда имеют только два состояния открыт/закрыт.

Этот режим позволяет снизить потери на коммутирующем полупроводниковом приборе до уровня:

U нас для современных полупроводниковых коммутаторов приближается к 0,3 v и при потребляемых токах 10 А потери мощности будут приближаться к 3 Вт. Это в режиме ключа, а при работе в устройствах ШИМ и меньше.

Реализовать преимущества ключевого режима в схемах понижающих и регулирующих напряжение постоянного тока, позволило использование ШИМ.

Повторюсь, широтно-импульсная модуляция — управление средним значением напряжения на интегрирующей нагрузке путём изменения скважности импульсов, с помощью управляющего ключа.

Работа ШИМ на интегрирующую нагрузку показана на рис. 1.


Главным условиям такого применения ШИМ является наличие интегрирующей нагрузки.

Потому что амплитудное значение напряжения равно E .

Это могут быть интегрирующая RC, LC, RLC или RL цепи и механические интеграторы (например электромотор).

При работе ШИМ на интегрирующей нагрузке напряжение - эквивалентное постоянное напряжение изменяется в зависимости от скважности ( Q ) импульсов.

здесь: Q - скважность, t и - длительность импульса, T - период следования импульсов.

С учетом скважности эквивалентное постоянное напряжение будет равно:

E экв = Q x E Вольт

здесь: E экв - эквивалентное постоянное напряжение ( Вольт ), Q - скважность, E - напряжение источника от которого запитан ШИМ преобразователь ( Вольт ).

Реально на зажимы нагрузки ШИМ подается напряжение равное E , а работа совершаемая электрическим током (или число оборотов электродвигателя) определяется именно E экв . При восстановлении на интегрирующем конденсаторе получаем именно напряжение E экв.

Мощность выделяемая на управляющем ключе, управляемом ШИМ равна:

Схема подключения нагрузки к ШИМ.

Никаких отличных от схемы включения электродвигателя на постоянном токе (частный случай нагрузки) схемных решений ШИМ не требует. Просто электродвичатель подключается к источнику питания работающего в режиме ШИМ. Разве что, в определенных ситуациях требуется ввести дополнительную фильтрацию помех возникающих на фронтах импульсов. Этот фильтр на рис. 2 в виде конденсаторов и демпфирующего диода.

На рис. 2 показано такое подключение.

Мы видим, что коммутатор (полевой транзистор) можно просто заменить на переменный резистор.

Схема PWM

здесь: GND - земля (общий), Control - контакт P WM управления, +12 - напряжение питания, Sense - вывод датчика оборотов.

В данной схеме управление возможно скорее постоянным током +I упр, чем ШИМ сигналом.

Для управления импульсным (ШИМ) сигналом требуется схема изображенная на рис. 4. Да и судя по параметрам транзистора "PWM" он выбирался именно для управления постоянным током. По крайней мере он будет нормально работать в таком режиме с вентилятором до 1,6 Вт.

А вот в импульсном режиме без конденсатора C , транзистор BC879 будет греться немного меньше чем на постоянном токе и возможен останов электродвигателя на малых длительностях токового импульса (малых оборотах) из-за его интегрирования на входной емкости C вх транзистора.

Основные параметры кремниевого биполярного высокочастотного n-p-n транзистора BC879 от SIEMENS

В случае необходимости отключить PWM (ШИМ) управление в схеме показанной на рис. 3 необходимо просто соединить вывод Control с проводом +12v .

Существенных отличий от рис. 3 нет, только в качестве управляемого ШИМ ключа используется МОП полевой транзистор со встроенным или индуцированным каналом p- типа. Данная схема тоже может управляться как P WM так и постоянным напряжением (но рисковать не стоит - надо знать параметры транзистора).

Данная схема вполне работоспособна и не имеет недостатков схемы показанной на рис. 3.

Для отключения (в зависимости от типа транзистора) достаточно соединить вывод Control с проводом + или -.

Вниманию самодельщиков!

Я бы не рекомендовал применение вентиляторов имеющих встроенный PWM (4- pin ) одновременно с какими либо иным регуляторам оборотов вентилятора.

В случае если Вас не устраивает алгоритм управления PWM встроенного на материнскую (системную) плату.

И у Вас есть устраивающий Вас реобас (контроллер управления вентилятором), то используйте вентилятор с 3-pin соединитель.

Если вентилятор с PWM вам дорог или не имеет замены - то необходимо отключить PWM , способом описанным выше, заменив соединитель 4-pin на 3-pin и подключить к реобасу.

Но помните применение вентилятора с PWM в любом нештатном режиме не позволит достичь его максимальной производительности.

Применение одновременно с PWM - токового управления на постоянном токе не рекомендуется по причине снижение напряжения питания вентилятора на 10-20%, что не даст вывести такой вентилятор на полную производительность.

Применение одновременно с PWM - ШИМ по цепи питания может привести к периодической нестабильности работы вентилятора (возможно возникновение скользящих биений между частотами PWM - ШИМ по цепи питания систем) и создать неоднозначность для систем оснащенных системой стабилизации оборотов. Кроме того как и в предыдущем случае на 10-15% снизится результирующее напряжение на вентиляторе, что не даст вывести такой вентилятор на полную производительность.

Так что остановитесь на чем-то одном. Или используйте вентилятор с PWM , или применяйте внешнее управление вентилятором по цепи питания на вентиляторе с 3-pin разъемом.

Заключение

Применение PWM или ,как привыкли говорить мы, ШИМ повышает КПД понижающих напряжение устройств постоянного тока, что снижает общее тепловыделение электронных устройств с ШИМ.

ШИМ позволяет создавать компактные системы регулируемого электропривода постоянного тока большой мощности.

В современных устройствах постоянного тока управляющих напряжением и понижающих стабилизаторах напряжениях обычно регулировки выполняются с помощью ШИМ. Для этого выпускаются контроллеры требующие минимум навесных элементов.

Ковыряемся в БИОС от глюкобайта


Итак, первым у нас идет функция Roboost Graphic Booster. Назначение ее вытекает из ее же названия - повышение производительности видеокарты. Естественно, самым идиотским способом - повышением частоты PCI-E ну и еще там по мелочи (вот меня всегда убивало: что за бред, ведь в 99.99% случаев производительность видео упирается в свойства и характеристики кристалла и памяти, но определенно не в ПС самой шины. На кой пихать этот бесполезный хлам ). В общем, обчыному пользователю она не нужна, а оверклокеру и подавно - смело ставим на Стандарт или авто и не забиваем себе мозги.

Далее идет CPU Clock Ratio. Ну тут нужно быть уже полным "дубом" чтобы не понять назначение сей функиции - изменение множителя. Удобно, что множитель задается цифрой вручную. Однако, дробный множитель мы там выставить не сможем, он выставляется с помощью следующей функции (сие применимо только для 45-нм процессоров Yorkfield и Wolfdale).

Ну далее мы видим значение частоты процессора при выбранном множителе и частоте шины, в общем понятно

CPU Host Clock Control - функция, которая блокирует и разблокирует ручное управление частотой шины процессора, PCI-E. Овеклокерам обзятельно включать

CPU Host Frequency - сие дело жизненно необходимо для овера - оно позволяет выставить значение чатоты шины FSB процессора (глюкобайт опять задал бесконечно здоровый диапазон значений - бсегда это бесило )

PCI Express Frequency - оно и понятно, задает частоту шины PCI-E. При разгоне желательно (да какое там, "желательно", - обязательно! фиксировать в пределах 100-103 МГц (многие оверы предпочитают ставить на значении 101, якобы это добавляет стабильности. Однако это все зависит от самой платы. Некоторые, например, ставили и 107. )). В противном случае посыпятся жесткие диски (а в очень, очень редких случаях может сыпануться и видеокарта, если значение частоты будет слишком большое).

C.I.A. 2 - обыному пользователю, неискушенному в оверклокерскому деле, но желающему повысить быстродействие компьютера может пригодиться - данная фигня позволяет включить динамический рагон при наргузке процессора. Естественно, есть несколько пресетов, отличающихся степенью разгона. Нам оверам, она на (censoured) не нужна, поэтому отключаем ее. (к слову сказать она и без того кривая).

Perfomance Enchance - сия функция для ленивых оверов, которым лень подбирать минимальные значения таймингов и Perfomance Level, заставляя маму делать это самой. Однако я лично ни разу не пользовался ею, помня тот кошмар с выставлением таймингов, который был у плат от глюкобайта раньше, предпочитая выставлять все вручную.

System Memory Multiplier - выставление частоты памяти и значения FSB страпа (грубо выражаясь, страп - это такая дрянь, которая понижает ПСП памяти при преодолении определенной частоты фронтальной шины). Частоты памяти показывается рядом и вычисляется по формуле FSBxMultiplier. Значений мнеодителя и страпа много, поэтому можно тонко настроить производительность памяти.


DRAM Timing Selectable - отключение/включение ручного управления таймингами памяти.

Далее идет целый раздел настроек тамингов памяти. Весь я его описывать не буду, ибо каждые значения для разного комплекта модулей памяти свои. Однако внимательный читатель наверняка заметил отсутствие в списке очень важного параметра: Perfomance level, серьезно влияющего на ПСП. Не стоит негодовать и поливать грязью платы, просто инженеры Гигабайт решили замаскировать этот параметр под ничего не говорящей неискушенному позователю функцией Static tREAD Value. Хитро, правда?

Далее идет раздел управления параметрами тактового генератора - Clock Driving & Skew Control.


Сии "прричендалы" понадобятся Вам только в тонкой настройке системы после разгона, для повышения стабильности системы, да и то при существенном разгоне. В основном, их можно оставить в покое.

Далее идет раздел управления напряжением, с главным "выключателем" System Voltage Control, у которого есть два значения: ручное и Авто. На авто я настоятельно не рекомендую ставить значения напруг - при разгоне плата устанавливает их просто баснословными. лучше все вручную.

DDR2 Voltage Control - оно и дураку понятно - позволяет овысить напряжение на памяти. Инженеры Гигабайт даже подсветили значения, что они считают небезопасными, розовым и красным цветом.

PCI-E Voltage Control - то же самое, только напруги для PCI-E.

FSB Overvoltage control - повышение напряжения на фронтальную шину FSB, понадобится при больших значениях оной (как минимум, за 400-420)

(G) MCH OverVoltage Control - добавление напруги на северный мост. Нужно для достижений больших значений FSB и частоты памяти.
ВНИМАНИЕ! Настоятельно советую (владельцам плат на на базе Х38/Х48 в особенности) поменять термоинтерфейс северника! Ибо то, что глюкобайтовци туда нацепили - это издевательство над здравым смыслом.
К слову, не советую владельцам плат на наборе логики Х38/Х48 особо увлекаться - мосты и без того раскалются а тут еще дополнительная напруга.

СPU Voltage Control - позволяет повышать/понижать напряжение на процессоре.

Loadline Calibration - эта весчь позволяет избежать процседания напряжения на процессоре при нагрузке. Теоретически. Фактически она реализовна у Гигабайта настолько отвратительно, что при даже включенной функции просадки достигают 0.05-0.06 В!! В случае двуядерных процессоров жить еще можно, но когда речь идет о четырехьядерных. Хоть намыливай веревку и вешайся. Ужас!

Ранее господа от глюкобайта любили применять так называемую "защиту от дурака", которая скрывала бы функции разгона в БИОСе, при этом же распихивали все функции куда только можно. Сейчас, как видите, все сосредоточено в одном разделе, но и при этом господа инженеры не удержались от искушения. С помощью комбинации клавиш Ctrl+F1, нажатой в основном окне БИОС, в разделе M.I.T. открываются еще две функции: CPU GTLREF1 Voltage control и CPU GTLREF2 Voltage Control. Я долго не мог понять для чего они нужны, и тем более зачем их нужно было скрывать, пока не понял, что они позволяют более тонку управлять напругой, подаваемой на процессор. Дело в том, что шаг подаваемой напруги на процессор не постоянный - он постепенно увеличвается со значением напряжения достигая значения 0.05-0.1 В при большbх значениях VCore. Поэтому для более тонкого управления напругой используются сии функции.

Ну, в общем-то и все. Надеюсь кому-то этот маразм старца, что я написал, да и поможет.

Управление оборотами 3-pin вентилятора посредством ШИМ(PWM)

Приветствую Вас! Это моя первая запись на ПС. <br/> Комп оборудован самодельной СВО,холодно,тихо,разгон -все замечательо.В системнике два вентилятора,120мм обдувал видеокарту(x1950gt Palit 512MB),а 250мм работает на вдув(корпус Aerocool) и третий в БП.Вентиляторы подключались параллельно через эмиттерный повторитель к разъему кулера видеокарты(2-pin),а сам кулер уступил место водоблоку.Схема работы очень проста,напряжение(читай обороты) на коннекторе кулера видеркарты регулируется в Riva Tuner и вентиляторы крутятъся как мне угодно. <br/> Все было хорошо до смены видеокарты на GF8800 GT 512MB Palit(синий кулер,не Sonic).Карта была подвегнута недельной пытке(разгон и тесты, на чем только можно),после чего поставил на нее &quot;воду&quot;,а кулер, соответственно.

Приветствую Вас! Это моя первая запись на ПС.
Комп оборудован самодельной СВО,холодно,тихо,разгон -все замечательо.В системнике два вентилятора,120мм обдувал видеокарту(x1950gt Palit 512MB),а 250мм работает на вдув(корпус Aerocool) и третий в БП.Вентиляторы подключались параллельно через эмиттерный повторитель к разъему кулера видеокарты(2-pin),а сам кулер уступил место водоблоку.Схема работы очень проста,напряжение(читай обороты) на коннекторе кулера видеркарты регулируется в Riva Tuner и вентиляторы крутятъся как мне угодно.
Все было хорошо до смены видеокарты на GF8800 GT 512MB Palit(синий кулер,не Sonic).Карта была подвегнута недельной пытке(разгон и тесты, на чем только можно),после чего поставил на нее "воду",а кулер, соответственно, отправился отдыхать.
Теперь ближе к делу.На этой карте кулер имеет четыре контакта и управляется ШИМ-сигналом, моя схема отказалась регулировать обороты.Пришлось расширить свои познания о технологии широтно-импульсной модуляции в интернете.Решение оказалось довольно простым -применить полевой транзистор,а не биполярный.Cхему приводить не буду,достаточно фотографии "изделия".



Паяем!
Я применил полевой транзистор D50NH,всем хорошо знакомый MOSFET.Донором послужила видеокарта 7600gt Palit,павшая жертвой вольтмода более года назад.Транзистор включается в разрыв черного провода("-" или "земля"), ШИМ-сигнал подается на затвор транзистора с видеокарты(на моей это синий провод или 1-й контакт слева).Желательно это сделать через резистор 1-2кОм "на всякий случай",т.к полевики боятся статики.Как видно на фото,питается вентилятор через 3-pin разъем и подключен к материнке,можно и к видеокарте подкючить,при наличии соответствующего разъема.Если все подкючено верно и транзистор не "битый",вентиль становится "послушным".
Таким не хитрым способом можно регулировать любой вентилятор.Не редко меняют "боксовый" кулер с 4-pin(ШИМ) коннектором на более эффективный,но оснащенный вентилятором с 3-pin разъемом,при этом на материнке остается невостребованным именно четвертый контакт с ШИМ сигналом.Теперь и его задействовать можно,например, у меня подключен корпусной 250мм вентиль,но им уже рулит Speedfan.
Надеюсь,мой опыт кому-то окажется полезным.
P.S
На фото черный провод на маленьком 2-pin разъеме ИЗОЛИРОВАН! Лень отрезать было.
Мониторинг оборотов в этой схеме не РАБОТАЕТ! Провод таходатчика необходимо отключить(по совету крупного спецталиста),во избежание повреждения схемы мониторинга оборотов или вентилятора!

Мониторинг оборотов работает.

Подпишитесь на наш канал в Яндекс.Дзен или telegram-канал @overclockers_news - это удобные способы следить за новыми материалами на сайте. С картинками, расширенными описаниями и без рекламы.

Широтно Импульсная Модуляция (ШИМ, PWM)


Однополярная модуляция означает, что происходит формирование импульсов только положительной величины и имеет место нулевое значение напряжения


Если сформированный таким образом сигнал подать на объект, обладающий фильтрующими свойствами, например, на двигатель постоянного тока или лампу накаливания, то объект будет использовать среднюю мощность сигнала.
Т.е. мощность, потребляемая объектом управления, пропорциональна скважности сигнала ШИМ, при условии, что период импульсов ШИМ на порядок меньше минимальной постоянной времени объекта.
ШИМ может быть встроенным выходом микропроцессора, может быть организована отдельно на выходе микропроцессора с обычным цифровым выходом.
Преимущество использования ШИМ — это легкость изменения величины напряжения при минимальных потерях.

Параметры ШИМ

Период тактирования T определяет через какие промежутки времени подаются импульсы.

Длительность импульса — величина показівающая время в течении которого подается сигнал t, с;

Скважность — Соотношение длины импульса (τ) к периоду тактирования (T); пропорционально модулирующей величине. Коэффициент заполнения обычно отображают в процентах (%).


Коэффициент заполнения D – величина обратная скважности.
Несмотря на то, что скважность и коэффициент заполнения могут использоваться в одинаковом контексте, физический смысл их отличается.
Эти величины безразмерны.

PS ШИМ может быть реализован не только при помощи микроконтроллеров, но и на аналоговой базе. Например, простейший ШИМ на основе мультивибратора из двух транзисторов:

Читайте также: