Почему в процессе эволюции возникли разные группы клеток и тканей

Обновлено: 05.07.2024

Физическим телом называют материальный объект, который имеет форму (простую), массу, объем и отделен от других тел при помощи внешней границы раздела. Например, камень, кусок шоколада – это твердые физические тела. Вода – жидкое физическое тело.

№ 2. Как называют мельчайшие частицы, из которых состоит вещество?

Клетки вещества состоят из частиц, которые называется молекулами. Молекулы в свою очередь состоят из мельчайших частиц – атомов.

№ 3. Что такое клетка? Каково её строение? Какие вещества её образуют?

Клетка – это элементарная структурная и функциональная единица живого организма, строение которой, несмотря на малые размеры, очень сложное. Она обладает собственным обменом веществ и способна к самовоспроизведению.

Все клеточные формы жизни на нашей планете делятся на два надцарства: прокариоты (доядерные) и эукариоты (ядерные). Прокариоты являются более простыми по строению и возникли в процессе эволюции раньше, чем эукариоты – более сложные.

Несмотря на разнообразие формы, организация клеток живых организмов подчиняется единым структурным принципам. Содержимое каждой клетки отделено от окружающей среды при помощи плазматической мембраны. Внутри сама клетка заполнена цитоплазмой, в которой находятся клеточные включения, молекулы ДНК и органеллы. Каждая из органелл клетки выполняет свою определенную функцию, но в совокупности они определяют ее жизнедеятельность.

Цитоплазма эукариотической клетки выполняет функцию цитоскелета, который состоит из трех элементов: микротрубочек, микрофиламентов и промежуточных филаментов. Она служит механическим каркасом, который поддерживает форму клетки.

Клеточное ядро является важнейшей частью клетки. Оно отделено от цитоплазмы оболочкой из двух мембран. В оболочке ядра находятся поры. Внутреннее содержимое ядра – кариоплазма или ядерный сок, в котором расположены ядрышко (плотное округлое тело) и хроматин (нити ДНК). Функция ядрышек – синтез белков и РНК. Из белков формируются рибосомы.

Аппарат Гольджи принимает участие в синтезе лизосомы и преобразовании белков. Лизосомы – пищеварительные органеллы клетки. Также в аппарате Гольджи происходит накопление веществ, которые клетка синтезирует для нужд всего организма и которые потом выводятся наружу из клетки.

Митохондрии – энергетические органоиды клеток, которые отвечают за преобразование питательных веществ в энергию и участвуют в дыхании. Покрыты они наружной гладкой мембраной и внутренней с многочисленными складками и выступами.

Центриоли – цилиндрические белковые структуры, которые располагаются около ядра клеток. Вокруг них находится центр организации цитоскелета, в котором группируются минус-концы микротрубочек клетки.

Стр. 23. Лабораторная работа. Изучение микроскопического строения тканей организма человека

«Ткани организма человека»


Вывод:

В организме человека различаются четыре вида тканей: соединительная, мышечная, эпителиальная и нервная. В клетках каждой из них есть органоиды, которые выполняют характерные для нее функции.

Стр. 23. Вопросы после параграфа

№ 1. Назовите основные уровни организации человека.

Выделяют несколько основных уровней организации человека:

№ 2. В чем особенности атомно-молекулярного уровня организации человека?

В состав живых организмов входит большое количество сложных органических веществ – биополимеров, которые представлены жирами, белками, углеводами и нуклеиновыми кислотами.

На молекулярном уровне жизни обмен веществ и превращение энергии проявляется как химические реакции, передача и изменение наследственной информации. Также в организме человека содержатся и такие химические вещества, как натрий, азот, водород, углерод, кислород, кальций, сера, которые характерны и для других живых организмов, например, растений или животных, и для неживых объектов. Эта особенность позволяет судить о единстве и связи между предметами живой и неживой природы.

№ 3. Что такое ткань? Какие группы тканей в организме человека вам известны?

Ткань – это совокупность клеток и межклеточного вещества, которые объединены общим происхождением, строением и функциями, выполняемыми в организме.

В организме человека выделяют четыре основные группы тканей: соединительная, эпителиальная, мышечная и нервная.

Стр. 23. Задание

Опишите общий план строения клетки человека и объясните, в чём заключается причина разнообразия форм и размеров различных специализированных клеток. Приведите примеры.

Клетка является основой строения и жизнедеятельности организмов, включая организм человека. Он состоит из огромного количества клеток, которые различаются размерами, формой. Это поясняется тем, что каждая клетка в многоклеточном организме человека может выполнять только определённые функции.

Отделены клетки друг от друга клеточной мембраной. Внутри каждой клетки выделяют ядро и цитоплазму, которые отделены друг от друга ядерной мембраной. Внутри ядра содержится ядрышко, в котором находятся рибосомы – важные органы клетки. Также в ядре расположены хромосомы (их основой являются молекулы ДНК, которые определяют наследственный аппарат клетки) и другие структуры и органоиды: рибосомы, лизосомы, митохондрии и аппарат Гольджи.

Клетки образуют ткани. Соединительная ткань образована разными по форме клетками и большим количеством плотного или жидкого межклеточного вещества. Эпителиальная ткань образована клетками, которые плотно прилегают друг к другу, и незначительным количеством межклеточного вещества. Мышечную ткань образуют клетки, которые могут сокращаться, а значит, изменяют свои размеры, форму. Нервную ткань образуют два типа клеток – глиальные и нервные (нейроны).

Стр. 23. Подумайте

Почему клетку считают основной структурной и функциональной единицей не только организма человека, но и всех других живых организмов?

Клетка является основной структурной и функциональной единицей всех живых организмов, которая способна к самовоспроизведению. В свою очередь, живые организмы могут состоять, как и из одной клетки, например, одноклеточные водоросли и животные, бактерии, так и из большого количества клеток. Из-за того, что в природе не существует более мелких систем, которым бы были присущи признаки свойства живого, нежели одноклеточные организмы, клетку называют еще и элементарной единицей.

Клетка, как низшая ступень организации, обладает всеми свойствами живой системы: растет и стареет, размножается, двигается и реагирует на внешние раздражители, может передавать по наследству свои признаки, способна к обмену веществ и энергии.

1. Почему у растений в ходе эволюции произошло четкое разделение тканей на разные типы (образовательная, механическая, выделительная, основная, покровная). 2. Что было бы с растениями, если бы вдруг у них исчезли механическая и покровная ткани? Или это никак не повлияет на дальнейшее существование растений?

elenavejmer81

1. Произошло усложнение функция растения и каждая ткань стала брать на себя определенные функции.

2. Если исчезнет механическая ткань, то растения обмякнут, она как скелет держит стволы и стебли. Если исчезнет покровная, то вредители уничтожат растения, а также болезни, пропадет защита от высыхания под влиянием солнечных лучей.

С чем связано появление тканей у растения эволюция кратко

ArtyomChelmakin

Характерной особенностью высших растений является то, что их клетки объединяются в группы, образуя настоящие ткани. Ткань - это совокупность взаимосвязанных клеток, имеющих общее происхождение, сходные по строению и выполняемым функциям. В ткани клетки связаны структурно и функционально. Наука, изучающая ткани, их происхождения, характерные особенности, функции, называется гистологией (от гр. Сл. "Histos" - ткань).

Растительные ткани можно классифицировать по различным признакам - по происхождению, по плотности и компактностью расположения клеток, по сложности, по выполняемым функциям, по уровню жизнедеятельности, по характеру дифференциации и другим признакам. По сложности выделяют простые ткани, клетки которых однородные по строению и выполняют одну функцию, и комплексные ткани, является полифункциональными и состоят из разнородных элементов. Зависимости от выполняемых функций выделяют следующие типы тканей - образующие, покровные, основные, механические, ведущие, выделительные и другие. По происхождению ткани бывают первичными, происходящих от малодифференцированных клеток, и вторичные, образующиеся в результате разделения уже дифференцированных взрослых клеток. По плотности различают рыхлые (с хорошо выраженными межклетников) и плотные ткани. По характеру дифференциации ткани подразделяют на эмбриональные и постоянные.

Основной причиной возникновения тканей в процессе эволюции растений был их выход на сушу. При этом растения попали в совершенно другой, чем водное, среда обитания, характеризующейся более сложным влиянием внешних условий. В надземных условиях существования растениям необходимы были более надежны внешние покрытия для защиты от различных неблагоприятных и изменчивых условий. Закрепление растений в почвенном субстрате обусловило дифференциацию их тела на подземную часть, выполняющая функцию минерального питания, и на надземную часть, выполняющая функцию воздушного питания.

Это обусловило формирование различных типов покровной и основной тканей. На суше возникли осложнения с поступления различных веществ к органам растений. Поэтому развиваются специальные проводящие элементы. Для поддержания тела в пространстве, предоставление ему определенной формы и противодействия внешним нагрузкам необходима была специальная Укрепляющая ткань, функцию которой начала выполнять механическая ткань.Вегетативное тело слизевиков представляет собой цитоплазматическую массу с большим числом ядер, лишенный клеточных перегородок. Такое тело называют плазмодия. В состав плазмодия входит около 75% воды, а сухой остаток почти на 30% состоит из белка; также гликоген. В отдельных видов слизевиков может содержаться до 28% карбоната кальция.

Размеры плазмодиев слизевиков варьируют в широких пределах - от микроскопических до нескольких сантиметров в диаметре. Плазмодии значительного числа видов слизевиков содержат пигменты, придающие им различной окраски - красного, ярко-желтого, розового, фиолетового, почти черного. Внутри плазмодия могут находиться пульсирующие вакуоли, а также присутствуют типичные органеллы.
По способу питания основная масса слизевиков представлена сапрофитными формами. Всей своей поверхностью они активно впитывают органические вещества из окружающей влаги. Однако, в отдельных случаях плазмодий может активно захватывать твердые пищевые частицы, живых бактерий, амеб, жгутиковых, мицелий и споры грибов. Поэтому слизевиков нельзя считать чисто сапрофитными организмами. Среди слизевиков встречаются и внутриклеточные паразиты растений. Их тело также имеет вид плазмодия. Однако, в отличие от свободно живущих сапрофитных форм, они не образуют никаких специальных органов спороношения, поскольку вместилищем для спор служит оболочка клеток растения-хозяина.

Органами спороношения, где формируются споры, является плодовые тела. Проще плодовое тело слизевиков представляет собой нечто вроде подушечки. При этом плазмодий, не меняя своей формы, образует снаружи перепончатую или хрящеватый оболочку. В сложных случаях плазмодий формирует одиночные или скученные, на ножках или сидячие плодовые тела.

Чаще отдел Слизевики разделяют на три класса - Протостелиеви, Миксогастрови или Собственно слизевики и Плазмодиофорови. Наиболее широко распространенным родом слизевиков есть род Ликогала из класса Миксогастрови. Его кораллово-розовый плазмодий образует на мертвой древесине органы спороношения в виде шариков или горошинок, размером от нескольких миллиметров до 15 см в диаметре. Внешне они напоминают грибов-дождевиков.

Практическое значение слизевик невелико. Однако, некоторые виды этого отдела являются возбудителями болезней и паразитами высших растений, в том числе и культурных. Важнейшим представителем паразитических форм является возбудитель грыжи капусты и других Капустный - Плазмодиофора капустная из класса Плазмодиофорови. Она поражает корни растений и вызывает разрастание (рак) клеток. Спонгоспора пасленовых является возбудителем мучнистой парши картофеля и поражает ее клубни, корни, изредка столоны.

Эволюция клеток и тканей

Происхождение, специализация и объединение клеток в ткани есть категории исторические, ибо они возникли в ходе филогенеза. Однако объяснение этих категорий чрезвычайно затруднено, поскольку между клетками прокариотических и эукариотических организмов существуют важные различия. Тем не менее известно несколько гипотез.

На основании изучения ископаемых остатков бактерий и циано-бактерий предполагают, что предковой клеточной формой была примитивная прокариотическая клетка, возникшая около 3,5 х 10 9 лет назад. Клетки этого типа для обеспечения своего существования и размножения в начале использовали органические молекулы небиологического происхождения. Первым актом в формировании примитивных клеток было образование мембраны, окружавшей вещество клетки.

В последующем у примитивных прокариотических клеток стали развиваться механизмы синтеза и энергетического обеспечения. Предполагают, что первые прокариотические клетки обладали наиболее простыми каталитическими системами, в результате чего обеспечение их энергией основывалось на брожении. В последующем отдельные виды прокариотических клеток переключились с брожения на дыхание, что способствовало более эффективному получению энергии. Таким образом, эволюционные изменения прокариотических клеток шли по линии развития у них различных метаболических путей. Их геном развивался в направлении формирования «голых» молекул ДНК.

Эволюционные изменения эукариотических клеток шли в направлении увеличивающегося разнообразия в форме, размерах, структуре и функциях с одновременной компартментализацией биохимических систем и сохранением общего для всех Клеток аэробного метаболизма. Считают, что эукариотические клетки возникли менее 1 млрд лет назад из прокариотических клеток, причем для объяснения их происхождения выдвинуто три гипотезы.

В соответствии с одной их этих гипотез (гипотезой клеточного симбиоза), которая является наиболее распространенной, предполагают, что эукариотическая клетка является симбиотической структурой, состоящей из нескольких клеток разных типов, объединенных общей клеточной мембраной. В частности, предполагают, что пластиды клеток современных зеленых растений происходят от бактерий, бывших предками современных цианобактерий и способных к аэробному фотосинтезу, а митохондрии эукариотических клеток ведут начало от аэробных бактерий, которые вступали в симбиоз с примитивными анаэробными клетками, способными к фотосинтезу, что привело к образованию клеток, способных к существованию в атмосфере кислорода и использованию кислорода путем дыхания. Относительно ядра предполагают, что оно является рудиментом также какого-то древнего внутриклеточного симбионта, утратившего после включения в исходную клетку свою цитоплазму. В пользу этой гипотезы свидетельствуют данные о симбиотических взаимоотношениях некоторых современных организмов. Например, одноклеточная зеленая водоросль хлорелла (Chlorella) обитает в цитоплазме зеленой парамеции (Paramecium bussaria). Из-за способности к фотосинтезу она снабжает парамеции питательными веществами. Пластиды и митохондрии содержат собственную систему генетической информации о синтезе белков в виде ДНК, мРНК, рРНК, тРНК и соответствующих ферментов. Для хлоропластов, митохондрии и клеток-прокариот характерно сходство способов репродукции (все они одинаково репродуцируются путем простого деления надвое). Наконец, мутации митохон-дриальных генов назависимы от мутаций ядерных генов.

В соответствии с другой гипотезой считают, что эукариотичес-кая клетка произошла от прокариотической клетки, содержавшей несколько геномов, прикрепленных к клеточной мембране. В результате инвагинаций клеточной мембраны образовывались мезо-сомы, способные первоночально к фотосинтезу. Однако в дальнейшем произошла специализация этих органелл, в результате чего одна из них, утратив дыхательную и фотосинтетическую функцию, развилась в ядро, другие, наоборот, развив эти функции, стали митохондриями у животных и пластидами у растений. В пользу этой гипотезы свидетельствуют данные о двойном строении мембран ядра, митохондрии и пластид.

В соответствии с третьей гипотезой, основанной на мысли о том, что все живые формы произошли от предковых анаэробных ферментативных гетеротрофов, эукариоты представляют собой сублинию бесстеночных (анаэробных) прокариотов, которые развили способность к эндоцитозу. Посредством «заглатывания» других прокариотов, которые дали им дополнительные метаболические способности и которые, в конце концов, дегенерировали в органеллы, примитивная клетка (уркариот) стала эукариотической клеткой. Таким образом, прокариоты древнее, проще и примитивнее клеток-эукариот.

В соответствии с четвертой гипотезой предполагают, что эука-риотические клетки возникли из прокариотической клетки, содержавшей много геномов, которые распадались на части, давшие начало структурам с разными функциями. В последующем шло кло-нирование структур со сходными функциями, после чего они покрывались двойными мембранами, что привело к образованию ядра, митохондрии, а позднее и мембранной сети. В пользу этой гипотезы свидетельствуют данные о сходстве генетического кода, содержащегося в ядерной и митохондриальной ДНК, а также о сходстве в регуляции дыхательной функции ядром и митохондриями.

Как отмечено выше, симбиотическая гипотеза происхождения эукариотических клеток сейчас наиболее популярна. Однако, разделяя эту гипотезу, нельзя не отметить, что митохондрии и хло-ропласты вопреки их сходству с современными бактериями-аэробами и цианобактериями (соответственно) все же существенно отличаются от них. В частности, в митохондриях и хлоропластах намного меньше ДНК. Следовательно, здесь митохондрии и хлоропласты в ходе эволюции претерпели значительные изменения в направлении своих размеров.

Геном эукариотических клеток впоследствии развивался в направлении объединения молекул ДНК с белками и формирования хроматина и хромосом разной формы и в разном количестве. Специализация хроматина проявилась в формировании эухроматина и гетерохроматина, в формировании аутосом и половых хромосом. Что касается количества хромосом, то объяснить их эволюционную тенденцию пока трудно, поскольку многие примитивные организмы содержат в своих клетках большее число хромосом, чем организмы, занимающие высшие эволюционные ступени. Однако несомненно, что количественные и структурные изменения карио-типов в течение эволюции играли важную роль в видообразовании. Параллельно с этим происходило усложнение структуры и функции клеточных компонентов, развитие регуляторных механизмов.

Несомненно эволюционное значение митоза. Считают, что точность разделения и распределения хромосом в результате митоза является условием, обеспечивающим многоклеточность. Однако происхождение самого митоза не имеет достаточных объяснений. Предполагают лишь, что он развился из примитивного митоза, представляющего собой механизм, при котором расхождение реп-лицировавшихся хромосом происходило после вытягивания и разрыва веретена без разрушения ядерной мембраны (см. выше).

Объяснения эволюции тканей связаны со сложностями, которые обусловлены одинаковым строением тканей, принадлежащих живым организмам, находящимся на разных ступенях эволюционной лестницы. Например, мышечные волокна членистоногих, некоторых моллюсков и позвоночных имеют одинаковое строение. Между тем эти организмы филогенетически разделены очень большими «расстояниями». Аналогичная ситуация имеет место и при сравнении тканей растений из разных таксономических групп.

Начала тканеобразования в эволюционном плане уже прослеживаются у самых простых организмов. Например, у вольвокса отмечается формирование колоний, состоящих иногда более чем из 50 000 клеток, причем часть клеток уже специализирована. В частности, клетки, располагающиеся по краям колониальной формы, ответственны за образование новых колоний. У цианобактерий при нерасхождении разделившихся клеток образуются клеточные нити, в которых часть клеток специализирована на фиксации азота, чем обеспечиваются потребности в азоте и других клеток.

Идя вверх по эволюционной лестнице, можно видеть, что у губок уже отмечается около пяти специализированных типов клеток, специализация которых связана с выполнением разных функций в процессе фильтрации воды и поглощения отфильтрованных пищевых частиц.

У кишечнополостных тело состоит из двух слоев — эктодермы и энтодермы, представляющих собой наружный и внутренний эпителиальные слои. Наружные эпителиальные клетки являются стрекательными клетками, содержащими ядовитую жидкость, тогда как внутренние эпителиальные клетки секретируют пищеварительные ферменты и обеспечивают пищеварение. Поэтому предполагают, что первыми сформировались слои эпителиальных клеток и их роль в эволюции многоклеточных аналогизируется с ролью клеточных стенок и мембран одноклеточных организмов.

Значительный вклад в понимание эволюции тканей принадлежит А. А. Заварзину (1886-1945), который считал, что одни и те же факторы эволюции обеспечили не только разнообразие организмов, но и однообразие строения их тканей. Сходство в строении тканей у филогенетически далеко отстоящих животных А. А. За-варзин называл законом параллельных рядов тканевой эволюции. Работы А. А. Заварзина и его учеников заложили основы эволюционной гистологии.

Вопросы для обсуждения

1. Насколько велико значение методов исследования в изучении клеток? Какие из этих методов вы знаете?

2. Сформулируйте основные положения клеточной теории. Как Вы считаете, какова роль этой теории в биологии?

3. Почему клетку определяют в качестве элементарной единицы жизни и в чем заключаются доказательства того, что клетка действительно является элементарной единицей жизни? Что представляют собой межклеточные структуры?

4. Назовите два процесса, которые являются общими для всех живых систем.

б. Назовите принципиальные различия между клетками-прокариота-ми и клетками-эукариотами. Является ли одноклеточность признаком прокариот?

6. Назовите и охарактеризуйте компоненты мембранной системы клеток животных. Есть ли мембранная система в клетках растений?

7. Охарактеризуйте цитоплазматический матрикс и клеточные орга-неллы. Что собой представляет цитозоль? Есть ли у клеток скелет? Как организован цитоскелет и каковы его компоненты?

8. Каковы структура и роль клеточного ядра? Есть ли различия между ядрами клеток животных и клеток растений?

9. Каковы структура и функции митохондрий? Все ли клетки обладают митохондриями?

10. Сформулируйте определения клеточного цикла и митоза. С какой скоростью протекают митозы в клетках разных тканей?

11. Что собой представляют лизосомы и какова их роль? Что произойдет с клетками, если лизосомы подвергнутся разрушению?

12. Каково значение ферментов в жизни клеток? Все ли белки являются ферментами и в чем заключается их действие?

13. Каковы фазы митоза и сущность процессов, происходящих в эти фазы?

14. В какой фазе происходит разделение центромеры и освобождение сестринских хроматид?

15. Определите, какая весовая часть ядра приходится на хроматин клетки (примерно), допуская, что диаметр ядра составляет б мкм, а плотность 1,1 г/см" 3 ?

16. Считая, что хромосомы человека состоят на 15% из ДНК, определите массу всех хромосом его диплоидных клеток.

17. Что вы можете сказать о происхождении митоза?

18. Что вы знаете об элементарном составе клеток?

19. Что понимают под биологическими молекулами?

20. Какой представляется вструктура белков и что вы знаете о функциях белков?

21. Как вы понимаете происхождение клеток-прокариот?

22. Как вы понимаете происхождение клеток-эукариот?

23. Каково ваше мнение относительно развития генома эукариотичес-ких клеток?

24. Каковы причины гибели клеток? Существует ли генетический механизм, контролирующий гибель клеток?

25. Что вы знаете об эпителиальных тканях и их функциях?

26. Назовите основные группы мышечной ткани и что составляет основу их классификации?

27. Каковы основные клеточные элементы собственно соединительных тканей?

28. Что такое нервная ткань и из каких компонентов она состоит?

29. Как вы представляете строение нервного волокна?

30. Почему кровь и лимфу считают тканями?

31. Какова функциональная роль лимфоцитов?

32. Как вы понимаете происхождение клеток-прокариотов и клеток-эукариотов?

33. Применима ли эволюционная теория к учению о тканях?

Литература

Альберте В., Брей Д., Льюис Дж„ Рэфф М., Роберте К., Уотсон Дж. Молекулярная биология клетки. М.: Мир. 1994. Т. 1. 615 стр.; 1994. Т. 2. 540 стр.

Вермель Е. М. История учения о клетке. М.: Наука. 1970. 259 стр.

Kaufman Р. В., Wu W. Handbook of Molecular and Cellular Methods in Biology and Medicine. CRC Press L. 1995. 496 pp. Lackie J. M„ Dow 3. A. The Dictionary of Cell Biology. Academic Press. 1995. 380 pp.

Читайте также: