Logical link control что это

Обновлено: 04.07.2024

Несмотря на то, что в HDLC не вoшли несколько характеристик, используемых в SDLC , он повсеместно считается некой суперразновидностью SDLC , совместимой с ним. LAP считается подразновидностью HDLC . LAPB был разработан, чтобы обеспечить продолжение совместимости с HDLC , который был изменен в начале 1980 гг. IEEE 802.2 является модификацией HDLC для окружений LAN.

Формат блока данных HDLC такой же, как у SDLC ; поля HDLC обеспечивают те же функциональные возможности, что и соответствующие поля SDLC . Кроме того, также, как и SDLC , HDLC обеспечивает синхронный режим работы с полным дублированием.

HDLC имеет несколько незначительных отличий от SDLC . Во-первых, HDLC имеет вариант для 32-х битовых контрольных сумм. Во-вторых, в отличие от SDLC , HDLC не обеспечивает конфигурации "loop" и "hub go-ahead". Главным различием между HDLC и SDLC является то, что SDLC обеспечивает только один режим передачи, в то время как HDLC обеспечивает три. HDLC обеспечивает следующие три режима передачи :

  • Режим нормальной ответной реакции ( NRM )

SDLC также использует этот режим. В этом режиме вторичные узлы не могут иметь связи с первичным узлом до тех пор, пока первичный узел не даст разрешения.

Этот режим передачи позволяет вторичным узлам инициировать связь с первичным узлом без получения разрешения.

В режиме АВМ появляется "комбинированный" узел, который, в зависимости от ситуации, может действовать как первичный или как вторичный узел. Все связи режима АВМ имеют место между множеством комбинированных узлов. В окружениях АВМ любая комбинированная станция может инициировать передачу данных без получения разрешения от каких-либо других станций.

LAPB является наиболее популярным протоколом благодаря тому, что он входит в комплект протоколов Х.25. Формат и типы блока данных, а также функции поля у LAPB те же самые, что у SDLC и HDLC . Однако в отличие от любого из этих двух протоколов, LAPB обеспечивает только один режим передачи ABM , поэтому он подходит только для комбинированных станций. Кроме того, цепи LAPB могут быть организованы либо терминальным оборудованием ( DTE ), либо оборудованием завершения действия информационной цепи ( DCE ). Станция, инициирующая обращение, определяется как первичная, в то время как реагирующая станция считается вторичной. И наконец, использование протоколом LAPB бита P/F несколько отличается от его использования другими протоколами. Подробности смотри ниже.

IEEE802.2

IEEE 802.2 часто называют Logical Link Control (LLC) (Управление логическим каналом связи). Он чрезвычайно популярен в окружениях LAN, где он взаимодействует с такими протоколами, как IEEE 802.3, IEEE 802.4 и IEEE 802.5.

IEEE 802.2 предлагает три типа услуг. Тип 1 обеспечивает услуги без установления соединения и подтверждения о приеме. Тип 2 обеспечивает услуги с установлением соединения. Тип 3 обеспечивает услуги без установления соединения с подтверждением о приеме.

Являясь обслуживанием без установления соединения и подтверждения о приеме, Тип 1 LLC не подтверждает передачу данных. Т.к. большое число протоколов верхнего уровня, таких как Transmission Control Protocol/ Internet Protocol (ТCP/IP), обеспечивают надежную передачу информации, которая может компенсировать недостаточную надежность протоколов низших уровней, Тип 1 является широко используемой услугой.

Обслуживание Типа 2 LLC (часто называемое LLC2) организует виртуальные цепи между отправителем и получателем и, следовательно, является обслуживанием с установлением соединения. LLC2 подтверждает получение информации; оно используется в системах связи IBM.

Обеспечивая передачу данных с подтверждением, обслуживание Типа 3 LLC не организует виртуальных цепей. Являясь компромиссом между двумя другими услугами LLC , Тип 3 LLC бывает полезным в окружениях фабричных автоматизированных систем, где обнаружение ошибок очень важно, однако область памяти контекста (для виртуальных цепей) чрезвычайно ограничена.

Конечные станции могут обеспечить множество типов услуг LLC . Устройство Класса 1 обеспечивает только услуги Типа 1. Устройство Класса II обеспечивает как услуги Типа 1, так и услуги Типа 2. Устройства Класса III обеспечивает услуги Типа 1 и Типа 3, в то время как устройства Класса IV обеспечивают все три типа услуг.

Процессы высших уровней используют услуги IEEE 802.2 через "точки доступа к услугам" (SAP). Заголовок IEEE 802.2 начинается с поля "точки доступа к услугам пункта назначения" (DSAP), которое идентифицирует принимающий процесс высшего уровня. Другими словами, после того, как реализация IEEE 802.2 принимающего узла завершит свою обработку, процесс высшего уровня, идентифицированный в поле DSAP, принимает оставшиеся данные. За адресом DSAP следует адрес "точки доступа к услугам источника" (SSAP), который идентифицирует передающий процесс высшего уровня.

Data link layer - LLC

Logical link control (общепринятое сокращение — LLC) — подуровень управления логической связью — по стандарту IEEE 802 — верхний подуровень канального уровня модели OSI. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

Содержание

Основными задачами подуровня LLC является:

  1. передача кадров данных между узлами с различной степенью надежности.
  2. обеспечение проверки и правильности передачи информации по соединению.
  3. предоставление интерфейса сетевому уровню.

Протокол LLC обеспечивает для технологий локальных сетей нужное качество услуг транспортной службы, передавая свои кадры либо дейтаграммным способом, либо с помощью процедур с установлением соединения и восстановлением кадров. LLC передает свой кадр вместе с адресной информацией об узле назначения соответствующему протоколу уровня MAC, который упаковывает кадр LLC в свой кадр (например, кадр Ethernet).

В соответствии со стандартом IEEE 802.2 уровень управления логическим каналом предоставляет верхним уровням три типа процедур:

  1. LLC1, Type1, connectionless – сервис без установления соединения и без подтверждения.
  2. LLC2, Type2, connection-oriented – сервис c установлением соединения и с подтверждением.
  3. LLC3, Type3 – сервис без установления соединения, но с подтверждением.

Сервис LLC1 предоставляет пользователю средства для передачи с минимальными издержками, если какой-то кадр теряется из-за шума, на канальном уровне не предпринимается никаких попыток восстановить его. Данный сервис, обычно, используется, когда задачи восстановления потерянных данных, их упорядочивание и восстановление после ошибок выполняются вышележащими уровнями, и нужды в их дублировании нет, например, в линиях связи реального времени или в каналах с низкой вероятности ошибки или потери кадра. Примером канального уровня, предоставляющего такой сервис, является Ethernet.

При использовании сервиса LLC2, прежде чем передавать друг другу данные, отправитель и принимающая сторона устанавливают соединение. Такой сервис гарантирует, что каждый кадр был принят на другой стороне канала связи. Кроме того, гарантируется, что каждый кадр был принят всего один раз и что все кадры были получены в правильном порядке. Данный сервис предоставляет процессам сетевого уровня эквивалент надежного потока бит. Он подходит для длинных ненадежных соединений, к примеру, таких, как спутниковый канал.

Сервис LLC3 так же, как и LLC1 не устанавливает логического соединения, но получение каждого кадра подтверждается. Таким образом, отправитель знает, дошел ли кадр до принимающей стороны в целости, был испорчен в пути или не дошел вовсе. Если в течении определенного интервала не поступает подтверждения, что кадр успешно доставлен, или поступает ответ от получателя о том, что кадр был испорчен, то отправитель посылает данный кадр заново. Такой сервис полезен в случае использования каналов с высокой вероятностью ошибок, например в беспроводных сетях. К сервисам такого класса можно отнести 802.11(WiFi).

Информационные кадры предназначены для передачи информации в процедурах с установлением логического соединения и обязательно должны содержать поле информации. Нумерация информационных кадров осуществляется в режиме скользящего окна.

У всех кадров протокола LLC общий формат:

  1. адрес точки входа сервиса назначения (Destination Service Access Point, DSAP)
  2. адрес точки входа сервиса источника (Source Service Access Point, SSAP)
  3. управляющее поле (Control, CTRL)
  4. поле данных (Data)

Кадр LLC обрамляется двумя однобайтовыми флагами, имеющими значение 01111110. Эти флаги используются на MAC уровне для определения границ блоков. Поле данных кадра LLC предназначено для передачи по сети данных, приходящих от верхних уровней, иногда может отсутствовать в управляющих и ненумерованных кадрах.

Поле управления однобайтовое(ненумерованные кадры) или двухбайтовое(информационные и управляющие кадры), и используется для обозначения типа кадра(информационный, управляющий или ненумерованный).

Биты 1 2-8 9 10-16
Информационные 0 [math]N(S)[/math] [math]P/F[/math] [math]N(R)[/math]
Управляющие 1 0 [math]SS[/math] [math]XXXX[/math] [math]P/F[/math] [math]N(R)[/math]
Ненумерованные 1 1 [math]MM[/math] [math]P/F[/math] [math]MM[/math]

В режиме LLC1 используются только ненумерованные кадры. Для этого кадра управляющее поле имеет длину один байт, а все подполя поля управления ненумерованных кадров принимают нулевые значения. Таким образом, значимыми остаются только первые 2 бита поля, используемые для обозначения типа кадра.

Connect.jpg

В режиме LLC2 используются кадры всех трех типов. Бит [math]P/F(Poll/Final)[/math] : в командах он называется битом [math]Poll[/math] и требует, чтобы на команду был дан ответ, в ответах он называется битом [math]Final[/math] и говорит, что ответ состоит из одного кадра. Ненумерованные кадры используются для установления и разрыва соединения двух узлов. Поле [math]M[/math] ненумерованных кадров определяет несколько типов команд:

  • Установить сбалансированный асинхронный расширенный режим (SABME). Эта команда является запросом на установление соединения. Расширенный режим означает использование двухбайтных полей управления для кадров остальных двух типов.
  • Ненумерованное подтверждение (UA). Служит для подтверждения установления или разрыва соединения.
  • Сброс соединения (REST). Запрос на разрыв соединения.

После установления соединения данные и положительные квитанции начинают передаваться в информационных кадрах. Логический канал протокола LLC2 является дуплексным, так что данные могут передаваться в обоих направлениях. Если поток дуплексный, то положительные квитанции на кадры также доставляются в информационных кадрах. Если же потока кадров в обратном направлении нет или же нужно передать отрицательную квитанцию, то используются информационные кадры.

В информационных кадрах имеется поле N(S) для указания номера отправленного кадра, а также поле N(R) для указания номера кадра, который приемник ожидает получить от передатчика следующим. При работе протокола LLC2 используется скользящее окно размером в 127 кадров, а для их нумерации циклически используется 128 чисел, от 0 до 127.

Приемник всегда помнит номер последнего кадра, принятого от передатчика, и поддерживает переменную с указанным номером кадра, который он ожидает принять от передатчика следующим. Именно это значение передается в поле N(R) кадра, посылаемого передатчику. Если в ответ на этот кадр приемник принимает кадр, в котором номер посланного кадра N(S) совпадает с номером ожидаемого кадра, то такой кадр считается корректным (если, конечно, корректна его контрольная сумма). Если приемник принимает кадр с номером N(S), неравным номеру ожидаемого кадра, то этот кадр отбрасывается и посылается отрицательная квитанция Отказ (REJ) с номером этого кадра. При приеме отрицательной квитанции передатчик обязан повторить передачу кадра с номером указанным в отрицательной квитанции, а также всех кадров с большими номерами, которые он уже успел отослать, пользуясь механизмом окна в 127 кадров(если используется протокол с возвратом на N).

Поле [math]SS[/math] обозначает одну из функций управления:

  • Отказ (REJect), биты устанавливаются разными [math]00[/math] ;
  • Приемник не готов (Receiver Not Ready, RNR), биты устанавливаются равными [math]10[/math] ;
  • Приемник готов (Receiver Ready, RR), биты устанавливаются равными [math]01[/math] .

Команда RR с номером N(R) часто используется как положительная квитанция, когда поток данных от приемника к передатчику отсутствует, а команда RNR -для замедления потока кадров, поступающих на приемник. Это может быть необходимо, если приемник не успевает обработать поток кадров, присылаемых ему с большой скоростью за счет механизма окна. Получение кадра RNR требует от передатчика полной приостановки передачи, до получения кадра RR. С помощью этих кадров осуществляется управление потоком данных, что особенно важно для коммутируемых сетей, в которых нет разделяемой среды, автоматически тормозящей работу передатчика за счет того, что новый кадр нельзя передать, пока приемник не закончил прием предыдущего.

Биты [math]XXXX[/math] зарезервированы и должны иметь нулевые значения.

Адресные поля DSAP и SSAP занимают по 1 байту. Они позволяют указать, какая служба верхнего уровня пересылает данные с помощью этого кадра. Программному обеспечению узлов сети при получении кадров канального уровня необходимо распознать, какой протокол вложил свой пакет в поле данных поступившего кадра, чтобы передать извлеченный из кадра пакет нужному протоколу верхнего уровня для последующей обработки. Для идентификации этих протоколов вводятся так называемые адреса точки входа службы (Service Access Point, SAP). Значения адресов SAP приписываются протоколам в соответствии со стандартом 802.2. Например, для протокола IP значение SAP равно [math]0[/math] x [math]6[/math] . Для одних служб определена только одна точка входа и, соответственно, только один SAP, а для других - несколько, когда адреса DSAP и SSAP совпадают. Например, если в кадре LLC значения DSAP и SSAP содержат код протокола IPX, то обмен кадрами осуществляется между двумя IPX-модулями, выполняющимися в разных узлах. Но в некоторых случаях в кадре LLC указываются различающиеся DSAP и SSAP. Это возможно только в тех случаях, когда служба имеет несколько адресов SAP, что может быть использовано протоколом узла отправителя в специальных целях, например для уведомления узла получателя о переходе протокола-отправителя в некоторый специфический режим работы.

Канальный уровень

Канальный уровень ( Data Link ) обеспечивает обмен данными через общую локальную среду. Он находится между сетевым и физическим уровнями модели OSI . Поэтому Канальный уровень должен предоставлять сервис вышележащему уровню, взаимодействуя с сетевым протоколом и обеспечивая инкапсулированным в кадр пакетам доступ к сетевой среде. В то же время, Канальный уровень управляет процессом размещения передаваемых данных в физической среде. Поэтому Канальный уровень разделен на 2 подуровня: верхний подуровень логической передачи данных LLC – Logical Link Control , являющийся общим для всех технологий, и нижний подуровень управления доступом к среде MAC – Media Access Control ( рис. 4.1). Кроме того, на Канальном уровне обнаруживают ошибки в передаваемых данных.

Подуровни Канального уровня

Взаимодействие узлов локальных сетей происходит на основе протоколов канального уровня. Международным институтом инженеров по электро- технике и радиоэлектронике (Institute of Electrical and Electronics Engineers – IEEE ) было разработано семейство стандартов 802.х, которое регламентирует функционирование канального и физического уровней семиуровневой модели ISO / OSI . Ряд этих протоколов являются общими для всех технологий, например, стандарт 802.2, другие протоколы (например, 802.3, 802.3u, 802.5) определяют особенности технологий локальных сетей.

На подуровне LLC существует несколько процедур, которые позволяют устанавливать или не устанавливать связь перед передачей кадров, содержащих данные, восстанавливать или не восстанавливать кадры при их потере или обнаружении ошибок. Этот подуровень реализует связь с протоколами сетевого уровня. Связь с сетевым уровнем и определение логических процедур передачи кадров по сети реализует протокол 802.2. Протокол 802.1 дает общие определения локальных вычислительных сетей, связь с моделью ISO / OSI . Существуют также модификации этого протокола, которые будут рассмотрены позже.

Подуровень МАС определяет особенности доступа к физической среде при использовании различных технологий локальных сетей. Протоколы МАС-уровня ориентированы на совместное использование физической среды абонентами . Разделяемая среда ( shared media ) применяется в таких широко распространенных в локальных сетях технологиях, как Ethernet , Fast Ethernet , Gigabit Ethernet , Token Ring , FDDI . Использование разделяемой между пользователями среды улучшает загрузку канала связи , удешевляет сеть , но ограничивает скорость передачи данных между двумя узлами.

Каждой технологии МАС-уровня соответствует несколько вариантов (спецификаций) протоколов физического уровня ( рис. 4.1). Спецификация технологии МАС-уровня определяет среду физического уровня и основные параметры передачи данных ( скорость передачи , вид среды, узкополосная или широкополосная).

Так, протоколу 802.3, описывающему наиболее известную технологию Ethernet, соответствуют спецификации физического уровня: 10Base-T, 10Base-FB, 10Base-FL. Число 10 показывает, что скорость передачи данных составляет 10 Мбит/с, Base – система узкополосная. Спецификация 10Base -T предусматривает построение локальной сети на основе использования неэкранированной витой пары UTP не ниже 3-й категории и концентратора . Спецификации 10Base -FB, 10Base-FL используют волоконно-оптические кабели. Более ранние спецификации 10Base -5 и 10Base -2 предусматривали использование "толстого" или "тонкого" коаксиального кабеля .

Протоколу Fast Ethernet (802.3u) соответствуют следующие спецификации физического уровня:

  • 100Base-T4 , где используется четыре витых пары кабеля UTP не ниже 3-й категории;
  • 100Base-TX – применяется две пары кабеля UTP не ниже 5-й категории;
  • 100Base-FX – используется два волокна многомодового оптического кабеля.

Помимо Ethernet и Fast Ethernet на МАС-уровне используется еще ряд технологий: Gigabit Ethernet со скоростью передачи 1000 Мбит/c – стандарты 802.3z и 802.3ab; 10Gigabit Ethernet со скоростью передачи 10 000 Мбит/c – стандарт 802.3ае, а также ряд других. Например, протокол 802.5 описывает технологию сетей Token Ring , где в качестве физической среды используется экранированная витая пара STP , с помощью которой все станции сети соединяются в кольцевую структуру. В отличие от технологии Ethernet , в сетях с передачей маркера ( Token Ring ) реализуется не случайный, а детерминированный доступ к среде с помощью кадра специального формата – маркера ( token ). Сети Token Ring позволяют передавать данные по кольцу со скоростями либо 4 Мбит/c, либо 16 Мбит/c. По сравнению с Ethernet технология Token Ring более сложная и надежная, однако Token Ring несовместима с новыми технологиями Fast Ethernet , Gigabit Ethernet , 10Gigabit Ethernet . Технологии Ethernet и совместимые с ними как раз и рассматриваются в настоящем курсе лекций.

Передаваемый в сеть пакет инкапсулируется в поле данных кадра протокола LLC , формат которого приведен на табл. 4.1.

Флаги определяют границы кадра LLC . В поле данных ( Data ) размещаются пакеты сетевых протоколов. Поле адреса точки входа службы назначения ( DSAP – Destination Service Access Point ) и адреса точки входа службы источника ( SSAP – Source Service Access Point ) длиной по 1 байту адресуют службу верхнего уровня, которая передает и принимает пакет данных. Например, служба IP имеет значение SAP , равное 0х6. Обычно это одинаковые адреса. Адреса DSAP и SSAP могут различаться только в том случае, если служба имеет несколько адресов точек входа. Таким образом, адреса DSAP и SSAP не являются адресами узла назначения и узла источника, да и не могут быть таковыми, поскольку поле длиной 1 байт позволяет адресовать только 256 точек, а узлов в сети может быть много.

Поле управления ( Control ) имеет длину 1 или 2 байта в зависимости от того, какой тип кадра передается: информационный ( Information ), управляющий (Supervisory), ненумерованный (Unnumbered). У первых двух длина поля Control составляет 2 байта, у ненумерованного – 1 байт . Тип кадра определяется процедурой управления логическим каналом LLC . Стандартом 802.2 предусмотрено 3 типа таких процедур:

  • LLC1 – процедура без установления соединения и подтверждения;
  • LLC2 – процедура с установлением соединения и подтверждением;
  • LLC3 – процедура без установления соединения, но с подтверждением.

Процедура LLC1 применяется при дейтаграммном режиме передачи данных. Для передачи данных используются ненумерованные кадры. Восстановление принятых с ошибками данных производят протоколы верхних уровней, например, протокол транспортного уровня. В дейтаграммном режиме функционирует, например, протокол IP .

Процедура LLC2 перед началом передачи данных устанавливает соединение, послав соответствующий запрос и получив подтверждение, после чего передаются данные. Процедура позволяет восстанавливать потерянные и исправлять ошибочные данные, используя режим скользящего окна . Для этих целей она использует все три типа кадров (информационные, управляющие , ненумерованные). Данная процедура более сложная и менее быстродействующая по сравнению с LLC1, поэтому она применяется в локальных сетях значительно реже, чем LLC1, например, протоколом NetBIOS / NetBEUI .

Широкое применение процедура, подобная LLC2, получила в глобальных сетях для надежной передачи данных по ненадежным линиям связи. Например, она используется в протоколе LAP -B сетей Х.25, в протоколе LAP -D сетей ISDN , в протоколе LAP -M сетей с модемами, частично – в протоколе LAP -F сетей Frame Relay .

Процедура LLC3 задействуется в системах управления технологическими процессами , когда необходимо высокое быстродействие и знание того, дошла ли управляющая информация до объекта.

Наиболее широкое распространение в локальных сетях получила процедура LLC1, в которой используются только ненумерованные типы кадров.

На передающей стороне кадр LLC -уровня передается на МАС- уровень, где инкапсулируется в кадр соответствующей технологии данного уровня. При этом флаги кадра LLC отбрасываются. Технология Ethernet предусматривает кадры четырех форматов, которые незначительно отличаются друг от друга. На табл. 4.2 приведен наиболее распространенный формат кадра стандарта 802.3/ LLC .

Преамбула кадра состоит из семи байт 10101010, необходимых для вхождения приемника в режим синхронизации. Начальный ограничитель кадра (Start of Frame Delimiter – SFD) – 10101011 вместе с преамбулой в итоге составляют 8 байт . Далее следуют физические адреса узла назначения (DA – Destination Address ) и узла источника ( SA – Source Address ). В технологиях Ethernet физические адреса получили название МАС- адресов. Они содержат 48 двоичных разрядов и представляются в шестнадцатеричной системе. В локальных сетях адресация узлов производится на основе МАС-адресов, которые "прошиты" в ПЗУ сетевых карт.

Адрес , состоящий из всех единиц FFFFFFFFFFFF, является широковещательным адресом ( broadcast ), когда передаваемая в кадре информация предназначена всем узлам локальной сети.

Младшие 24 разряда МАС-адреса (6 шестнадцатеричных разрядов) задают уникальный номер оборудования, например, номер сетевой карты . Следующие 22 разряда задают идентификатор производителя оборудования. Старший бит , равный 0, указывает на то, что адрес является индивидуальным, а равный 1 – на то, что адрес является групповым. Второй старший бит , равный 0, указывает, что идентификатор задан централизованно комитетом IEEE . В стандартной аппаратуре Ethernet идентификатор всегда задан централизованно. Несмотря на то, что в МАС-адресе выделена старшая и младшая части, МАС- адрес считается плоским ( flat ).

Поле L ( рис. 4.3) определяет длину поля данных Data , которое может быть от 46 до 1497 байт (в информационных кадрах процедуры LLC2 – до 1496 байт , поскольку поле Control – 2 байта). Если поле данных меньше 46 байт , то оно дополняется до 46 байт .

Поле контрольной суммы ( FCS – Frame Check Sequence ) длиной в 4 байта позволяет определить наличие ошибок в полученном кадре за счет использования алгоритма проверки на основе циклического кода .

4.2. Локальные сети технологии Ethernet

В сетях технологии Ethernet , построенных на основе логической топологии " общая шина ", разделяемая среда передачи данных является общей для всех пользователей, т. е. реализуется множественный доступ к общей среде. Для передачи данных используется манчестерский код , скорость передачи составляет 10 Мбит/с, т.е. длительность битового интервала равна 0,1 мкс. Между кадрами должен быть интервал длительностью 9,6 мкс. Переданную в сеть информацию может получить любой компьютер , у которого адрес сетевого адаптера совпадает с адресом DA передаваемого кадра, или все компьютеры сети при широковещательной передаче. Однако передавать информацию в любой момент времени может только один узел. Такой способ обмена данными получил название метода множественного доступа к среде с распознаванием несущей и фиксацией коллизий ( CSMA/CD – Carrier Sence Multiply Access with Collision Detection ), суть которого объясняется ниже.

При одновременной передаче данных двумя компьютерами возникает так называемая коллизия, когда данные двух передающих узлов накладываются друг на друга и происходит потеря информации . Поэтому прежде чем начать передачу, узел должен убедиться, что общая шина свободна. Для этого он прослушивает среду. Если какой-либо компьютер сети уже передает данные, то в сети обнаруживается несущая частота передаваемых сигналов. Если по окончании передачи сразу два узла попытаются одновременно начать передачу своих данных, то возникнет коллизия , которая фиксируется компьютерами. Узел, первым обнаруживший коллизию , усугубляет ее путем передачи в сеть специальных JAM - сигналов для оповещения всех компьютеров сети. При этом компьютер должен немедленно прекратить передачу данных и выдержать паузу в течение некоторого случайного интервала времени. По окончании этого интервала узел может вновь попытаться передать свои данные.

Длительность паузы составляет

где Tотс – интервал отсрочки, равный 512 битовым интервалам, т. е. при скорости 10 Мбит/с интервал отсрочки Tотс = 51,2 мкс;

L – случайное целое число , выбранное из диапазона [0, 2 N ], где N – номер повторной попытки передачи узлом данного кадра. N изменяется от 1 до 10. Всего повторных попыток передачи может быть 16, но после 10-ой попытки число N не увеличивается. Таким образом, L может принимать значения от 0 до 1024, а пауза Tп= 0 - 52,4 мс. После 16-й неудачной попытки, приведшей к коллизии , кадр отбрасывается.

\ge

Длительность передачи кадра Тк должна быть больше максимально возможного времени обнаружения коллизии Твок. В этом случае узел, начавший передачу и затем обнаруживший коллизию , сможет повторно передать кадр , хранящийся в буфере. В противном случае переданный кадр теряется. Наихудший случай будет при передаче кадра минимальной длительности Ткmin, когда должно выполняться условие Ткmin Твок. Максимально возможное время обнаружения коллизии Твок определяется размерами сети (диаметром сети). Твок макс – это время, за которое сигнал передаваемого кадра дойдет до самого удаленного узла и сигнал о коллизии вернется обратно. Это время получило название времени двойного оборота ( PDV – Path Delay Value).

\ge

С учетом условия Ткmin Твок а также времени задержки сигналов в устройствах сетевых адаптеров и концентраторов , максимальный диаметр сети Ethernet установлен 2500 м, а минимальная длина кадра вместе с преамбулой – 72 байта. Поэтому минимальная длина поля данных составляет 46 байт , а максимальная длина поля данных – 1497 байт . Основные технические характеристики сети Ethernet сведены в таблицу 4.3.

Сеть Ethernet стандарта 10 Base-T

Для построения сети с большим числом узлов несколько концентраторов соединяют между собой, однако максимальное число концентраторов между двумя любыми компьютерами не должно быть больше 4. Требования к сети определяются правилом 5-4-3, в котором 5 – общее число сегментов сети, 4 – максимальное число концентраторов между любыми хостами, 3 – хосты могут быть только в трех сегментах. При этом диаметр сети может существенно увеличиться. Структура сети должна быть древовидной, петлевые соединения запрещены.

Для реализации сетей максимального диаметра 2500 м используют оптоволоконный кабель , которым соединяют между собой концентраторы или узлы и концентраторы . Стандарт 10 Base -FВ предписывает соединения только между концентраторами . Причем между узлами сети может быть до 5 концентраторов , а диаметр сети может быть увеличен до 2740 м.

Введение в сетевые протоколы

Физический уровень пересылает просто набор сигналов – битов. При этом не учитывается, что несколько компьютеров, подключенных к одной среде передачи данных (например, к одному кабелю), могут начать одновременно передавать информацию в виде электрических импульсов, что, очевидно, приведет к смешению сигналов. Поэтому одной из задач Data layer ( канальный уровень ) является проверка доступности среды передачи . Также этот уровень отвечает за доставку фреймов между источником и адресатом в пределах сети с одной топологией. Для обеспечения такой функциональности Data layer разделяют на два подуровня:

  • логическая передача данных ( Logical Link Control , LLC );
  • управление доступом к среде ( Media Access Control , MAC ).

LLC отвечает за переход со второго уровня на более высокий – третий сетевой уровень .

MAC отвечает за передачу данных на более низкий уровень – Physical layer .

Рассмотрим эти подуровни более подробно.

LLC sublayer

Этот подуровень был создан для обеспечения независимости от существующих технологий. Он обеспечивает обмен данными с сетевым (третьим) уровнем вне зависимости от физической среды передачи данных. LLC получает данные с сетевого уровня, добавляет в них служебную информацию и передает пакет для последующей инкапсуляции и обработки протоколом уровня MAC. Например, это может быть Ethernet , Token Ring , Frame Relay .

MAC sublayer

Этот подуровень обеспечивает доступ к физическому уровню. Для передачи пакетов по сети необходимо организовать идентификацию компьютеров в сети. Для этого у каждого компьютера на канальном уровне определен уникальный адрес, который еще иногда называют физическим адресом, или MAC-адресом.

Он записан в энергонезависимой памяти сетевой карты и задается производителем. Длина MAC-адреса 48 бит, или 6 байт (каждый байт состоит из 8 бит), которые записываются в шестнадцатеричном формате. Первые 3 байта называются OUI (Organizational Unique Identifier ), организационный уникальный идентификатор. Этот номер выдается каждому производителю сетевого оборудования международной организацией IEEE (Institute of Electrical and Electronic Engineers, Институт инженеров по электротехнике и радиоэлектронике, источник многих стандартов и спецификаций). Последние 3 байта являются идентификационным номером самой сетевой карты . Производитель гарантирует, что все его адаптеры имеют различные номера. Такая система адресов гарантирует, что в сети не будет двух компьютеров с одинаковыми физическими адресами.

Записываться физический адрес может в разных форматах, например: 00:00:B4:90:4C:8C, 00-00-B4-90-4C-8C, 0000.B490.4C8C – разные производители используют разные стандарты. Рассмотрим, например, адрес 0000.1c12.3456 . Здесь 0000.1с – идентификатор производителя, а 12.3456 – идентификатор сетевой карты .

Рассмотрим устройства, применяемые для построения сетей в разных топологиях.

Топология шина ("bus") описывает общую среду передачи данных, которая уже рассматривалась для иллюстрации протокола Ethernet . Специальных устройств для построения такой сети не используется (впрочем, конкретные технологии могут предъявлять специфические требования; например, концы коаксиального кабеля должны подключаться к особому устройству – терминатору, но это не влияет на структуру сети).

На топологии кольцо ("ring") основывается протокол Token Ring . Физически сеть представляет собой замкнутое кольцо, в котором каждый компьютер двумя отрезками кабеля соединяется со своими соседями. В отличие от сети, работающей на основе Ethernet , здесь используется более сложная схема. Передача ведется последовательно по кольцу в одном направлении. В сети циркулирует кадр специального формата – маркер (token). Если машина не имеет данных для передачи, она при получении маркера передает его дальше по кольцу. В противном случае она изымает его из обращения, что дает ей доступ к сети, и затем отправляет пакет с адресом получателя, который начинает передаваться по кольцу. Когда он доходит до адресата, тот делает пометку, что пакет получен. Машина-отправитель, получив подтверждение, отправляет соседу новый маркер для обеспечения возможности другим станциям сети передавать данные. Хотя этот алгоритм более сложен, он обеспечивает свойства отказоустойчивости.

При построении сети на основе топологии "звезда" нужно использовать, кроме сетевых карт в компьютере, дополнительное сетевое оборудование в центре, куда подключаются все "лучи звезды". Например, в качестве такого устройства может применяться концентратор (hub). В этом случае каждый компьютер подключается к нему с помощью кабеля " витая пара ". Алгоритм работы концентратора очень прост – получив пакет на один из своих портов, он пересылает его на все остальные. В результате снова получается общая шина, точнее, – логическая общая шина, поскольку физическая структура сети звездно-образная. Технология Ethernet позволяет снизить количество коллизий с помощью CSMA/CD. Недостатком концентратора является то, что пользователи сети могут "прослушивать" чужой трафик (в том числе перехватить пароль, если он передается в открытом виде). Общая максимальная скорость делится между всеми подключенными пользователями. То есть, если скорость передачи данных составляет 10 Мбит/с, то в среднем на каждого пользователя может приходиться всего 2 Мбит/с.

Более дорогим, но и более производительным решением является использование коммутатора (switch). Коммутатор, в отличие от концентратора, имеет в памяти таблицу, сопоставляющую номера его портов и MAC-адреса подключенных к нему компьютеров. Он анализирует у каждого пересылаемого фрейма адрес отправителя, пытаясь определить, какие машины подключены к каждому из его портов. Таким образом коммутатор заполняет свою таблицу. Далее при прохождении очередного фрейма он проверяет адрес получателя, и если он знает, к какому порту подключена эта машина, он посылает фрейм только на один этот порт. Если адрес получателя коммутатору неизвестен, то он отправляет фрейм на все порты, кроме того, с которого этот пакет пришел. Таким образом, получается, что если два компьютера обмениваются данными между собой, то они не перегружают своими пакетами другие порты и, соответственно, их пакеты практически невозможно перехватить.

Построенные таким образом сети могут охватывать несколько сотен машин и иметь протяженность в несколько километров. Как правило, такая сеть охватывает одно или несколько зданий одного предприятия, а потому называется локальной сетью (Local area network, LAN).

Network layer (layer 3)

В предыдущей лекции мы рассмотрели второй уровень в модели OSI . Одним из ограничений этого уровня является использование "плоской" одноуровневой модели адресации. При попытке построить большую сеть , применяя для идентификации компьютеров MAC -адреса, мы получим огромное количество broadcast -трафика. Протокол, который поддерживается третьим уровнем, задействует иерархическую структуру для уникальной идентификации компьютеров.

На сетевом уровне ( Network layer ) существует несколько протоколов, которые позволяют передавать данные между сетями. Наиболее распространенным из них на сегодняшний день является IP . Его предшественник, протокол IPX , сейчас уже практически не используется в публичных сетях, но его можно найти в частных, закрытых сетях.

Новая система адресации, вводимая на сетевом уровне, должна облегчать роутеру определение пути для доставки пакета через глобальные сети . Рассмотрим реализацию наиболее популярного на сегодняшний день протокола IP более подробно.

При прохождении данных с верхних уровней на нижние на сетевом уровне к пакету добавляется служебный заголовок этого уровня. В заголовке IP -пакета содержится необходимая для дальнейшей передачи информация , такая как адреса отправителя и получателя. Понятие IP -адреса очень важно для понимания работы глобальных сетей, поэтому остановимся на нем более подробно.

IP-адрес

IP-адрес представляется 32-битным бинарным числом, которое часто записывают в виде 4 десятичных чисел, от 0 до 255 каждое. Например: 60.13.54.11, 130.154.201.1, 194.11.3.200 . Логически он состоит из двух частей – адреса машины (host) и адреса сети (network). Сетевая часть IP-адреса показывает, к какой сети принадлежит адресат, а хост-часть (host) идентифицирует сетевое устройство в этой сети. Компьютеры с одинаковой сетевой частью находятся в одной локальной сети, а потому могут легко обмениваться данными. Если же у них различные network-ID , то, даже находясь в одном физическом сегменте , они обычно не могут "увидеть" друг друга.

Так как IP-адрес состоит из 4-х октетов (так называют эти числа, поскольку 256=2 8 ), один, два или три первых октета могут использоваться для определения сетевого адреса, остальные задают host-части. Для удобства выделения адресов пользователям (ведь, как правило, организации требуется их сразу несколько), было введено 5 классов адресов. Их обозначают латинскими буквами от A до E. В открытых сетях используются первые три из них.

В таблице 16.2 дано примерное разбиение IP-адресов на сетевую (N) и машинную (H) части в зависимости от класса сети.

Класс A

В классе A для идентификации сети, к которой принадлежит адрес, используется первый октет, причем, первый бит всегда равен 0. Остальные октеты задают адрес хоста. Таким образом, адрес сети класса A может быть в диапазоне 0-126 . 127-й адрес зарезервирован для специального использования – все адреса, начинающиеся со 127 , считаются локальными для сетевого адаптера , то есть всегда отправитель сам является и получателем. Остальные свободные три октета применяются для задания адреса хоста в данной сети. Это означает, что в одной сети может быть использовано до 2 24 адресов (из них два крайних, то есть 0 и 2 24 -1 , зарезервированы, они рассматриваются ниже). Стало быть, в каждой из 127 сетей класса A можно адресовать 16,777,214 машин.

Диапазон адресов 10.0.0.0-10.255.255.255 в публичных сетях не используется. Эти адреса специально зарезервированы для применения в локальных сетях и глобальными маршрутизаторами не обрабатываются.

Класс B

В сети класса B первые два октета (причем, первый бит всегда равен 1, второй – 0) используются для определения сети, последние два октета – для определения адреса хоста. Диапазон адресов сети класса B лежит в пределах от 128.0.x.x до 191.255.x.x , что дает 16,384 таких сетей. В каждой из них может быть не более 65,534=2 16 -2 адресов (два крайних адреса исключаются).

В этой подсети зарезервированными для локального использования являются следующие адреса: 172.16.0.0-172.31.0.0 .

Класс C

Диапазон сети класса C определяется первыми тремя октетами (первые биты всегда 110 ). И в десятичном виде эта сеть может начинаться со 192 по 223 . Для определения адреса хоста используется последний октет. Таким образом, в каждой из 2,097,152 сетей класса C может быть задействовано 2 8 (без двух крайних) или 254 адреса.

Зарезервированными для локального использования являются следующие адреса: 192.168.0.0-192.168.255.255 .

Class D

Этот класс используется для особых задач (multicast-группы). Диапазон адресов – 224.0.0.0-239.255.255.255 .

Class E

Этот класс адресов зарезервирован для применения в будущем. Диапазон адресов – 240.0.0.0-247.255.255.255 .

Два адреса в каждой подсети являются зарезервированными. IP-адрес, в котором вся хост-часть состоит из бинарных нулей, используется для обозначения адреса самой сети. Например, сеть класса A может иметь адрес 112.0.0.0 , а компьютер, подключенный к ней, – адрес 112.2.3.4 . Адрес сети используется роутерами для задания маршрута.

Второй зарезервированный адрес – броадкаст-адрес ( broadcast ). Этот адрес применяется, когда источник хочет послать данные всем устройствам в локальной сети. Для этого хост-часть заполняется бинарными единицами. Например, для рассмотренной сети 112.0.0.0 это будет адрес 112.255.255.255 , а для сети класса B 171.10.0.0 броадкаст-адрес будет выглядеть как 171.10.255.255 . Данные, посланные по адресу 171.10.255.255 , будут получены всеми устройствами в сети 171.10.0.0 .

Подсети. Маска подсети

Введение классов сетей во многом упростило задачу распределения адресов по организациям. Но не всегда имеет смысл использовать, например, целую сеть класса C, если в ней реально будет размещено лишь 10 компьютеров. Для более рационального использования сетей организуют подсети.

Адрес подсети включает в себя сетевую часть от сети класса A, B или C и так называемое поле подсети (subnet field). Для этого значения выделяют дополнительные биты, принадлежащие хост-части (то есть для адреса подсети может быть использовано до 3-х октетов из сети класса A, до 2-х из сети класса B, и 1 для C, соответственно). Таких битов может быть минимально один (таким образом одна сеть разделяется на две подсети), а максимально столько, чтобы для хост-части оставалось еще два бита (иначе подсеть будет состоять лишь из двух служебных адресов - адреса подсети и броадкаст-адреса). Для сетей класса A это дает от 1 до 22 битов, для B – от 1 до 14 битов, для C – от 1 до 6.

Разбиение на подсети уменьшает также размеры броадкаст-доменов, что необходимо, иначе для сети класса A броадкаст-запрос может рассылаться на 16 миллионов компьютеров. И если каждый из них пошлет хотя бы по одному такому запросу, нагрузка на сеть будет чрезмерно большой. Если же компьютер находится в выделенной подсети, то в соседние сети и подсети роутер пересылать броадкаст-запрос не будет, вследствие чего экономится полоса пропускания физических каналов связи.

Для определения длины адреса подсети используется специальное понятие – маска подсети. Это число определяет, какая часть IP-адреса применяется для задания сетевой и подсетевой части. Маску подсети можно определить следующим образом. Запишем IP-адрес в бинарном виде. Все разряды, относящиеся к network- и subnet-части, заменим на 1, все значения, относящиеся к host-части,– на 0. В результате получим маску подсети.

Например, маска подсети для целой сети класса A будет выглядеть как 255.0.0.0 , для сети класса B: 255.255.0.0 , для сети класса C – 255.255.255.0 . Для разделения на подсети, как было сказано выше, нужно некоторые биты хост-части выделить для поля подсети . Например, маска 255.255.255.192 определяет подсеть класса C, для которой количество хостов будет равно 62 .

Протоколы ARP, RARP

Когда формируется пакет для отправления, на сетевом уровне закладывается IP-адрес получателя. Однако для передачи на нижестоящий канальный уровень также нужно знать MAC-адрес. Для определения соответствия IP-адресу MAC-адреса существует ARP-протокол (Address Resolution Protocol, протокол определения адресов). Он работает следующим образом.

Для того, чтобы не нагружать широковещательными запросами сеть, ARP-протокол поддерживает специальную ARP-таблицу, которая находится в оперативной памяти и хранит соответствие между IP- и MAC-адресами. После удачного определения MAC-адреса какого-нибудь узла сети делается соответствующая запись в таблицу, чтобы при следующей отсылке пакета не пришлось снова рассылать broadcast -запросы. Спустя некоторое время запись удаляется. Это позволяет автоматически подстраиваться под изменения в сети, ведь у какого-то узла могли изменить MAC- или IP-адрес. Если отправитель не находит IP-адрес получателя в ARP-таблице, то снова формируется и отправляется ARP-запрос.

Протокол RARP (Reverse ARP – обратный ARP) действует наоборот – он известному MAC-адресу сопоставляет IP-адрес. Это необходимо, например, для работы таких протоколов, как BOOTP (Bootstrap Protocol, протокол автоматической настройки) и DHCP (Dynamic Host Configuration Protocol, протокол динамической конфигурации хостов). Их назначение – облегчить задачи системному администратору. Они позволяют не вводить IP-адрес в каждый компьютер локальной сети, а назначают их сами в автоматическом режиме. При загрузке очередной машины посылается broadcast -запрос – противоположный ARP-запросу. Если в ARP-запросе идет опрос "IP получателя известен, MAC получателя – . ", то в RARP-запросе "MAC получателя известен, IP - . ". Если в сети есть DHCP-сервер, он отвечает на RARP-запрос, указывая IP-адрес для этого компьютера (особенно это эффективно при большом количестве компьютеров).

Оба эти протокола работают в рамках лишь локальной сети, поскольку все пакеты, направляемые в другие сети, обрабатываются и маршрутизируются роутером, поэтому знать MAC-адрес не требуется (отправитель указывает MAC-адрес самого роутера).

Читайте также: