Как сделать робота в реальной жизни

Обновлено: 17.06.2024

К выходу фильма «Терминатор: Генезис» Дмитрий Безуглов разобрался в составляющих частях легендарного боевого андроида Т-800 и собрал технологии, доступные в 2015 году, которые можно использовать для его воплощения в жизнь.

Как создать боевого робота Т-800 в реальной жизни

В 2015 году Т-800 выглядит как человек, победивший машину, скрывающуюся внутри. Схватка далась ему тяжело: он научился проговаривать вслух не очень ловкие шутки, потерял физическую подготовку и просто устал. Молодая Сара Коннор называет его папочкой, а новой фирменной фразой уставшего возвращаться Терминатора становится «Я не стар, я устарел» — с точки зрения корпорации Skynet и с позиций робототехники.

Когда Кэмерон придумывал первого Терминатора, а Стэн Уинстон собирал его буквально из подручных материалов, малоподвижный и пугающий Т-800 был провозвестником мрачного будущего, живо представлявшегося зрителям: не так давно кончилась холодная война, парниковый эффект и экологические катастрофы из повестки заседаний ООН выбрались в публичную сферу, а экономические провалы политики США взялись списывать и на технократическую демократию. Малоподвижный Т-800 с немигающим красным взором был воплощением всех этих угроз.

Если же не хочется собирать действительно работающего Т-800, достаточно обзавестись качественной репликой, что и сделал Адам Сэвидж из «Разрушителей мифов»

В XXI веке пугающая привлекательность Терминатора уже не столь очевидна; публичные выступления на тему экологических катастроф все реже оказываются в новостной повестке; корпорациям все чаще удается побеждать свободную волю мыслящего индивида, просто помещая человека в условия тотального комфорта; а в желании построить боевого андроида не упрекнешь ни одну из держав (создание экзоскелетов и беспилотников не в счет, они совсем не похожи на людей). Но именно сейчас, когда пророческая сила творения Джеймса Кэмерона и Стэна Уинстона больше не действует, в поле робототехники и экспериментальной кибернетики доступны практически все составные детали Т-800. И пусть Джеймс Кэмерон и говорил, «мы можем построить такого робота, скорее, в 2029 году».

Полезные роботизированные устройства для начинающих

Первые шаги в робототехнике можно начать:

Эндоскелет

Рука робонавта способна делать сложные движения; у нее 14 степеней свободы — отдельно двигается запястье, пальцы сгибаются в фалангах, способны сжиматься в кулак и показывать «победу» — совсем как человеческие

Изначальный облик Т-800 — металлический скелет с ужасающе ухмыляющимся черепом — Джеймс Кэмерон придумал еще до того, как взялся за написание сценария первого «Терминатора». Согласно Рэндаллу Фрейксу, разрабатывавшему историю вместе с Кэмероном, скелет Терминатора сделан из гиперсплава — металла куда более гибкого и прочного, нежели обычная сталь. В первой версии Т-800 не отличается грациозностью движений и обильно потеет (по одному из предположений, оттого что плоть отторгает металл и человеческая оболочка Т-800 постоянно воспалена).

Но металлический каркас обходился без таких трудностей — ему не вредили ни прямые выстрелы из дробовика, ни лобовые столкновения с гигантскими автомобилями. Пожалуй, в первых версиях скелету недоставало грациозности; но уже с наступления «Судного дня» Терминатор стал значительно подвижнее.

Рука Найджела способна проворачиваться на 360 градусов — она работает не так точно, как рука робонавта, и существенно облегчает домашние дела

Робонавт, разрабатывавшийся при участии Boston Dynamics для миссий NASA, отличается гибкостью, которая была бы к лицу Т-800, — рука, используемая для деликатных работ на космических кораблях, работает в широком температурном диапазоне и способна симулировать хватку человека практически в 90 процентах случаев.

Есть воодушевляющий пример и из области медицинской роботехники — Найджел Экланд обзавелся рукой Bebionic в 2012 году и с тех пор регулярно участвует на конвентах по роботехнике; профильная пресса именует его Human 2.0, а он отлично управляется с протезом: бионической рукой он может рисовать, писать, пользоваться холодильником и даже открывать пивные банки. Найджел, в отличие от первой версии Т-800, редко покрывается каплями пота и обычно излучает добродушие.

Машинное зрение

Драматичное видео, на котором АR-600 узнает своих создателей и других людей

Аналогичное видение будет внедряться уже через несколько лет — DARPA

Но, если верить Джеймсу Кэмерону, разрешившему плоти Т-800 стареть, Терминатор относится к киборгам; в нем сочетаются механические детали с живыми тканями. А зрение киборгов устроено сложнее, чем видение роботов, — его разрабатывают и программисты, и робототехники, и специалисты по оптогенетике. Таких специалистов также поддерживает DARPA — агентство Пентагона, внедряющее в реальную жизнь боевые придумки, которыми давно пользуются игроки Battlefield. Благодаря DARPA американским военным будет доступно зрение Терминатора — в феврале 2015 представители агентства презентовали имплант, позволяющий проецировать на сетчатку носителя всю доступную информацию о видимом объекте.

Подобное нововведение не полностью соответствует зрению Терминатора, который может включать приближение, выводить на сетчатку данные о температуре объекта, его удаленности; включать режимы ночного видения и инфракрасного зрения, но достаточно близко с ним соотносится.

Создаем робота в домашних условиях



Наверняка, насмотревшись фильмов про роботов, тебе не раз хотелось построить своего боевого товарища, но ты не знал с чего начать. Конечно, у тебя не получится построить двуногого терминатора, но мы и не стремимся к этому. Собрать простого робота может любой, кто умеет правильно держать паяльник в руках и для этого не нужно глубоких знаний, хотя они и не помешают. Любительское роботостроение мало чем отличается от схемотехники, только гораздо интереснее, потому что тут так же затронуты такие области, как механика и программирование. Все компоненты легкодоступны и стоят не так уж и дорого. Так что прогресс не стоит на месте, и мы будем его использовать в свою пользу.

Введение

Итак. Что же такое робот? В большинстве случаев это автоматическое устройство, которое реагирует на какие-либо действия окружающей среды. Роботы могут управляться человеком или выполнять заранее запрограммированные действия. Обычно на роботе располагают разнообразные датчики (расстояния, угла поворота, ускорения), видеокамеры, манипуляторы. Электронная часть робота состоит из микроконтроллера (МК) – микросхема, в которую заключён процессор, тактовый генератор, различная периферия, оперативная и постоянная память. В мире существует огромное количество разнообразных микроконтроллеров для разных областей применения и на их основе можно собирать мощных роботов. Для любительских построек широкое применение нашли микроконтроллеры AVR. Они, на сегодняшний день, самые доступные и в интернете можно найти много примеров на основе этих МК. Чтобы работать с микроконтроллерами тебе нужно уметь программировать на ассемблере или на Cи и иметь начальные знания в цифровой и аналоговой электронике. В нашем проекте мы будем использовать Cи. Программирование для МК мало чем отличается от программирования на компьютере, синтаксис языка такой же, большинство функций практически ничем не отличаются, а новые довольно легко освоить и ими удобно пользоваться.

Что нам нужно

Для начала наш робот будет уметь просто объезжать препятствия, то есть повторять нормальное поведение большинства животных в природе. Всё что нам потребуется для постройки такого робота можно будет найти в радиотехнических магазинах. Решим, как наш робот будет передвигаться. Самым удачным я считаю гусеницы, которые применяются в танках, это наиболее удобное решение, потому что гусеницы имеют большую проходимость, чем колёса машины и ими удобнее управлять (для поворота достаточно вращать гусеницы в разные стороны). Поэтому тебе понадобится любой игрушечный танк, у которого гусеницы вращаются независимо друг от друга, такой можно купить в любом магазине игрушек по разумной цене. От этого танка тебе понадобится только платформа с гусеницами и моторы с редукторами, остальное ты можешь смело открутить и выкинуть. Так же нам потребуется микроконтроллер, мой выбор пал на ATmega16 – у него достаточно портов для подключения датчиков и периферии и вообще он довольно удобный. Ещё тебе потребуется закупить немного радиодеталей, паяльник, мультиметр.

Делаем плату с МК



Схема робота

В нашем случае микроконтроллер будет выполнять функции мозга, но начнём мы не с него, а с питания мозга робота. Правильное питание – залог здоровья, поэтому мы начнём с того, как правильно кормить нашего робота, потому что на этом обычно ошибаются начинающие роботостроители. А для того, чтобы наш робот работал нормально нужно использовать стабилизатор напряжения. Я предпочитаю микросхему L7805 – она предназначена, чтобы на выходе выдавать стабильное напряжение 5В, которое и нужно нашему микроконтроллеру. Но из-за того, что падение напряжения на этой микросхеме составляет порядка 2,5В к нему нужно подавать минимум 7,5В. Вместе с этим стабилизатором используются электролитические конденсаторы, чтобы сгладить пульсации напряжения и в цепь обязательно включают диод, для защиты от переполюсовки.
Теперь мы можем заняться нашим микроконтроллером. Корпус у МК — DIP (так удобнее паять) и имеет сорок выводов. На борту имеется АЦП, ШИМ, USART и много другого, что мы пока использовать не будем. Рассмотрим несколько важных узлов. Вывод RESET (9-ая нога МК) подтянут резистором R1 к «плюсу» источника питания – это нужно делать обязательно! Иначе твой МК может непреднамеренно сбрасываться или, проще говоря – глючить. Так же желательной мерой, но не обязательной является подключение RESET’а через керамический конденсатор C1 к «земле». На схеме ты так же можешь увидеть электролит на 1000 мкФ, он спасает от провалов напряжения при работе двигателей, что тоже благоприятно скажется на работе микроконтроллера. Кварцевый резонатор X1 и конденсаторы C2, C3 нужно располагать как можно ближе к выводам XTAL1 и XTAL2.
О том, как прошивать МК, я рассказывать не буду, так как об этом можно прочитать в интернете. Писать программу мы будем на Cи, в качестве среды программирования я выбрал CodeVisionAVR. Это довольно удобная среда и полезна новичкам, потому что имеет встроенный мастер создания кода.



Плата моего робота

Управление двигателями

Не менее важным компонентом в нашем роботе является драйвер двигателей, который облегчает нам задачу в управлении им. Никогда и ни в коем случае нельзя подключать двигатели напрямую к МК! Вообще мощными нагрузками нельзя управлять с микроконтроллера напрямую, иначе он сгорит. Пользуйтесь ключевыми транзисторами. Для нашего случая есть специальная микросхема – L293D. В подобных несложных проектах всегда старайтесь использовать именно эту микросхему с индексом «D», так как она имеет встроенные диоды для защиты от перегрузок. Этой микросхемой очень легко управлять и её просто достать в радиотехнических магазинах. Она выпускается в двух корпусах DIP и SOIC. Мы будем использовать в корпусе DIP из-за удобства монтажа на плате. L293D имеет раздельное питание двигателей и логики. Поэтому саму микросхему мы будем питать от стабилизатора (вход VSS), а двигатели напрямую от аккумуляторов (вход VS). L293D выдерживает нагрузку 600 мА на каждый канал, а этих каналов у неё два, то есть к одной микросхеме можно подключить два двигателя. Но, чтобы перестраховаться, мы объединим каналы, и тогда потребуется по одной микре на каждый двигатель. Отсюда следует, что L293D сможет выдержать 1.2 А. Чтобы этого добиться нужно объединить ноги микры, как показано на схеме. Микросхема работает следующим образом: когда на IN1 и IN2 подаётся логический «0», а на IN3 и IN4 логическая единица, то двигатель вращается в одну сторону, а если инвертировать сигналы – подать логический ноль, тогда двигатель начнёт вращаться в другую сторону. Выводы EN1 и EN2 отвечают за включение каждого канала. Их мы соединяем и подключаем к «плюсу» питания от стабилизатора. Так как микросхема греется во время работы, а установка радиаторов проблематична на этот тип корпуса, то отвод тепла обеспечивается ногами GND — их лучше распаивать на широкой контактной площадке. Вот и всё, что на первое время тебе нужно знать о драйверах двигателей.

Датчики препятствий

Чтобы наш робот мог ориентироваться и не врезался во всё, мы установим на него два инфракрасных датчика. Самый простейший датчик состоит из ик-диода, который излучает в инфракрасном спектре и фототранзистор, который будет принимать сигнал с ик-диода. Принцип такой: когда перед датчиком нет преграды, то ик-лучи не попадают на фототранзистор и он не открывается. Если перед датчиком препятствие, тогда лучи от него отражаются и попадают на транзистор – он открывается и начинает течь ток. Недостаток таких датчиков в том, что они могут по-разному реагировать на различные поверхности и не защищены от помех — от посторонних сигналов других устройств датчик, случайно, может сработать. От помех может защитить модулирование сигнала, но пока мы этим заморачиватся не будем. Для начала, и этого хватит.



Первый вариант датчиков моего робота

Прошивка робота

Чтобы оживить робота, для него нужно написать прошивку, то есть программу, которая бы снимала показания с датчиков и управляла двигателями. Моя программа наиболее проста, она не содержит сложных конструкций и всем будет понятна. Следующие две строки подключают заголовочные файлы для нашего микроконтроллера и команды для формирования задержек:

Следующие строки условные, потому что значения PORTC зависят от того, как ты подключил драйвер двигателей к своему микроконтроллеру:

PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 1;
PORTC.3 = 0;

Значение 0xFF означает, что на выходе будет лог. «1», а 0x00 – лог. «0».

Следующей конструкцией мы проверяем, есть ли перед роботом препятствие и с какой оно стороны:

Если на фототранзистор попадает свет от ик-диода, то на ноге микроконтроллера устанавливается лог. «0» и робот начинает движение назад, чтобы отъехать от препятствия, потом разворачивается, чтобы снова не столкнуться с преградой и затем опять едет вперёд. Так как у нас два датчика, то мы проверяем наличие преграды два раза – справа и слева и потому можем узнать с какой стороны препятствие. Команда «delay_ms(1000)» указывает на то, что пройдёт одна секунда, прежде чем начнёт выполняться следующая команда.

Заключение

Я рассмотрел большинство аспектов, которые помогут тебе собрать твоего первого робота. Но на этом робототехника не заканчивается. Если ты соберёшь этого робота, то у тебя появится куча возможностей для его расширения. Можно усовершенствовать алгоритм робота, как например, что делать, если препятствие не с какой-то стороны, а прямо перед роботом. Так же не помешает установить энкодер – простое устройство, которое поможет точно располагать и знать расположение твоего робота в пространстве. Для наглядности возможна установка цветного или монохромного дисплея, который может показывать полезную информацию – уровень заряда аккумулятора, расстояние до препятствия, различную отладочную информацию. Не помешает и усовершенствование датчиков – установка TSOP (это ик-приёмники, которые воспринимают сигнал только определённой частоты) вместо обычных фототранзисторов. Помимо инфракрасных датчиков существуют ультразвуковые, стоят подороже, и тоже не лишены недостатков, но в последнее время набирают популярность у роботостроителей. Для того, чтобы робот мог реагировать на звук, было бы неплохо установить микрофоны с усилителем. Но по-настоящему интересным, я считаю, установка камеры и программирование на её основе машинного зрения. Есть набор специальных библиотек OpenCV, с помощью которых можно запрограммировать распознавание лиц, движения по цветным маякам и много всего интересного. Всё зависит только от твоей фантазии и умений.

Список компонентов:
  • ATmega16 в корпусе DIP-40>
  • L7805 в корпусе TO-220
  • L293D в корпусе DIP-16 х2 шт.
  • резисторы мощностью 0,25 Вт номиналами: 10 кОм х1 шт., 220 Ом х4 шт.
  • конденсаторы керамические: 0.1 мкФ, 1 мкФ, 22 пФ
  • конденсаторы электролитические: 1000 мкФ х 16 В, 220 мкФ х 16В х2 шт.
  • диод 1N4001 или 1N4004
  • кварцевый резонатор на 16 МГц
  • ИК-диоды: подойдут любые в количестве двух штук.
  • фототранзисторы, тоже любые, но реагирующие только на длину волны ик-лучей
Код прошивки:

Тип МК : ATmega16
Тактовая частота : 16,000000 MHz
Если у тебя частота кварца другая, то это нужно указать в настройках среды:
Project -> Configure -> Закладка "C Compiler"
*****************************************************/

void main(void)
//Настраиваем порты на вход
//Через эти порты мы получаем сигналы от датчиков
DDRB=0x00;
//Включаем подтягивающие резисторы
PORTB=0xFF;

//Настраиваем порты на выход
//Через эти порты мы управляем двигателями
DDRC=0xFF;

//Главный цикл программы. Здесь мы считываем значения с датчиков
//и управляем двигателями
while (1)
//Едем вперёд
PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 1;
PORTC.3 = 0;
if (!(PINB & (1<<PINB.0))) // Проверяем правый датчик
//Едем назад 1 секунду
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
//Заворачиваем
PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
>
if (!(PINB & (1<<PINB.1))) // Проверяем левый датчик
//Едем назад 1 секунду
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
//Заворачиваем
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 1;
PORTC.3 = 0;
delay_ms(1000);
>
>;
>

О моём роботе


В данный момент мой робот практически завершён.

На нём установлена беспроводная камера, датчик расстояния (и камера и этот датчик установлены на поворотной башне), датчик препятствия, энкодер, приёмник сигналов с пульта и интерфейс RS-232 для соединения с компьютером. Работает в двух режимах: автономном и ручном (принимает сигналы управления с пульта ДУ), камера также может включаться/выключаться дистанционно или самим роботом для экономии заряда батарей. Пишу прошивку для охраны квартиры (передача изображения на компьютер, обнаружение движений, объезд помещения).

По пожеланиям выкладываю видео:

UPD. Перезалил фотографии и сделал небольшие поправки в тексте.

Статья была опубликована мною в журнале «Хакер» за август 2009 года.

Робот, реагирующий на источник света

Для быстрого сбора механизмов используются предметы, которые можно найти дома. Это моторчики и батарейки из детских игрушек, проволока, солнечные аккумуляторы от старых калькуляторов, светодиоды. Дополнительно потребуются фиксаторы (клей, изолента), отвертка и другие инструменты из домашней мастерской.

Необходимые инструменты и детали

При сборке конструкции простого робота своими руками потребуются:

Для проделывания отверстий на картоне потребуется шило, а фиксатором элементов послужит термопластичный клей (из термопистолета). Для работы также понадобится паяльник и жесткая проволока, которую заменит разогнутая скрепка.

Робот краб НЕХА

Процесс сборки

Готовые детали следует разложить на рабочем столе и включить паяльник. Первоначально собирают плату, для чего подготавливают текстолитовую или картонную основу со сторонами от 4 до 5 см. На ней должна уместиться схема, батарейки, двигатели и крепеж переднего колеса.

Первоначально запаивают датчики с учетом полярности подсоединения фотодиодов и фототранзисторов. Их размещают по углам платы с одного края, располагая так, чтобы они смотрели в разные стороны. Это передняя часть робота, его «глаза».

Поодаль от переднего края фиксируют транзисторы, запаивая их так, чтобы маркировка располагалась на стороне правого колеса.

К 3 соединенным батарейкам подпаивают провода и определяют на плате 2 точки их схождения (плюс и минус). Удобно продеть в края платы витую пару, запаять концы к транзисторам и датчикам, вывести петлю и к ней подпаять батарейки.

Двигатели устанавливают в конце шасси с противоположной стороны платы. Управляющий моторчик крепят напротив управляемой системы. Это необходимо, чтобы робот поворачивался на свет.

Сборку электрики начинают от отрицательного полюса батарейки к положительному контакту по всей схеме. Взяв часть витой пары, припаивают отрицательный контакт датчиков к минусу батарей, и в это же место добавляют коллекторы транзисторов.

Робот, следующий за источником света

Второй фотоэлемент припаивают небольшим куском провода к транзисторной базе. Остальные ножки присоединяют к моторчикам. Для проверки правильности сборки используют тестер полярности напряжения.

После сборки проводят тестирование. Для этого включают схему и подносят ее к источнику света, поворачивая сначала одним, затем другим чувствительным элементом.

Когда все сделано правильно, двигатели на плате вращаются, меняя скорость в зависимости от степени освещения.

Далее осуществляют сборку устройства. Первым делом изготавливают боковые колеса, склеив крышки между собой полой частью внутрь. Для их фиксации просверливают небольшые отверстия, используя миниатюрную дрель с насадками. В колесо продевают проволоку (бывшую скрепку) и закрепляют ее концы между фотодатчиками на плате.

На последнем этапе проверяют работу механизма, используя источники освещения разной интенсивности. Колеса робота должны ехать вперед. Если система работает, зафиксированные на плате моторчики и батарейки закрепляют термоклеем.

После приступают к изучению возможностей робота и расширению его функционала. Например, ставят задачу, чтобы он ездил по заданной траектории.

Необходимые навыки

Для изготовления роботов новичкам потребуются следующие навыки:

  • умение конструировать, создавать механизмы;
  • знание того, как обеспечивается взаимодействие маленьких помощников с внешней средой;
  • изучение темы, так как сделать шагающего робота своими руками – задача не из легких;
  • начальное представление о программировании – переменных, алгоритмах, современных языках.

Познакомившись с азами программирования, можно переходить к созданию самодельных роботов-пылесосов, мойщиков бассейнов и окон в доме. Применение роботам можно найти и в других сферах жизни.

DIY: делаем боевого робота в домашних условиях. Часть 1

Мы с командой делаем робота для участия в Битве Роботов. Наш робот называется «Большой Брат», и он смотрит на тебя! Смотрит, настигает и разносит вдребезги. Хищный нрав и мощные кинетические орудия делают его идеальной машиной для убийства. Он уже здесь, он рядом — беги!

Это краткая история разработки боевого робота в домашних условиях. Осторожно трафик! Много изображений.





Описание конкурса

Времени очень мало, но мы стараемся изо всех сил.

Ниже представлена информация для конструкторов по созданию роботов-участников боёв Бронебот.

1. Конструкция

  • Тяжелый класс: 100 кг.
  • Средний класс: 50 кг.
  • Легкий класс: 17 кг.
  • Тяжелый класс: 1.5 х 1 метров в длину и ширину.
  • Средний класс: 1 х 0.75 метров в длину и ширину.
  • Легкий класс: 0.5 х 0.5 метров в длину и ширину.
  • Высота не ограничена.

1.4. Роботы должны быть оснащены тумблерами ВКЛВЫКЛ в части, отдаленной от оружия, полностью отключающими питание всех подсистем робота. Если тумблеров несколько, они должны находиться рядом. Тумблеры могут быть спрятаны под оболочкой, но должны быть доступными без переворачивания робота или разборки с помощью инструментов.

1.5. Летающие роботы запрещены.

2. Электричество

2.1. Напряжение питания роботов не должно превышать 36 Вольт.

2.2. Все электрические соединения должны сделаны качественно и на должном уровне изолированы. Кабели должны быть проложены с минимальным шансом быть разорванными.

2.3. Аккумуляторы должны быть полностью изолированные и не содержать жидкостей. Соединения аккумуляторов должны быть полностью изолированными.

2.4. Двигатели внутреннего сгорания запрещены.

3. Гидравлика

3.1. Давление в гидравлических линиях не должно превышать 204 атм (3000 psi/20.4 mps).

3.2. Гидравлические жидкости должны находиться в надежных емкостях внутри робота. Все гидравлические линии должны быть проложены с минимальным шансом быть поврежденными.

4. Пневматика

4.1. Давление в пневматеческих линиях не должно превышать 68 атм (1000 psi/6.8 mps).

4.2. Пневматические емкости должны быть подлежащего качества, промышленного производства. Давление в них должно соответствовать спецификации производителя.

4.3. Пневматические емкости должны быть закреплены внутри робота и защищены от повреждений.

4.4. Газы для пневматики должны быть невоспламеняющимися или инертными, например, воздух, углекислый газ, аргон, азот.

4.5. Должна быть предусмотрена возможность спустить давление в системе без разбора конструкции.

5. Оружие
5.1. Каждый робот должен быть оснащен минимум одним активным оружием.

  • Пиротехника
  • Огнеметы
  • Жидкости
  • Едкие вещества
  • Неуправляемые снаряды
  • Электрошокеры
  • Радиоглушители
  • Тепловые пушки
  • Гауссганы
  • Любое оружие, использующее горящие или воспламеняющиеся газы

5.4. Вращающие диски из закаленной стали и лезвия, которые при поломке образовывают осколки, запрещены.

5.5. Длина лезвийштыков не должна превышать 20 см.

5.6. Все подвижные манипуляторы, даже не содержащие оружия, должны иметь фиксирующие крепежи. Крепежи должны быть закрытыми во всех случаях, кроме нахождения робота на арене или техобслуживании.

5.7. Все острые грани и элементы оружия должны иметь крышки или насадки. Эти элементы не учитываются при взвешивании.

6. Радиоуправление

6.1. Используемые частоты должны быть разрешены законодательством РФ.

6.2. Робот не должен обладать автономностью. Все управление должно осуществляться исключительно с пульта оператора.

6.3. Все системы роботов должны быть отключаться при потере управляющего сигнала.

6.4. Стабильность управления должна быть продемонстрирована Организаторам заранее для допуска к участию.

6.5. Для избежания конфликтов частоты между роботами участники должны иметь два набора “передатчик-приемник”, работающих на разных частотах.

Арена


Бои будут проходить на специальной пуленепробиваемой сцене 10х10 метров со скошенными углами, т.е. фактически это восьмиугольник.


Другие роботы

Большинство роботов имеют богатый опыт участия в соревнованиях, но это только делает задачу выиграть у них еще интересней.

Наша команда


  • Вячеслав Голицын
  • Александр Егоров
  • Андрей Такташов
  • Дмитрий Елисеев
  • Павел Поздняков

Краткое описание робота


  • Низкий центр масс
  • Низкий клиренс
  • Возможность повернуться в случае переворота
  • Возможность опрокинуть соперника
  • Геометрия корпуса как пассивная защита.

Так же из фич: Отделяемая часть робота, и пилы.

Каркас, форма, сборка

Разрезаем профиль






Колеса со строительного рынка


Двигатели


У нас была очень большая надежда на шаговые двигатели Nema 43. По заявленным характеристикам они нам подходили, мы варили под них раму. При подключении оказалось, что справится с какой-либо нагрузкой они не смогут. В срочном порядке пришлось искать другое решение. Мы нашли двигатели 36В 500Вт и уже переделали раму под них.

Радиоуправление

Обработкой ШИМ-сигнала с пульта занимается Arduino (Душа моего робота-газонокосилки). Проблема с обработкой заключалась в том, что на подсчет ШИМ-сигнала с 8 каналов уходит много времени. Выполняя это в основном цикле программы, оказывалось невозможно отправлять на драйверы двигателей адекватное количество пульсов для движения. Решением было выведение работы с шаговиками в функцию запускаемую по таймеру и изменением параметров таймера в основном цикле. Сейчас уже оказывается все это не нужно, коллекторными двигателями мы управляем через драйвер, на который будем подавать ШИМ, который смело можно изменять в основном цикле программы.


Пневмосистема

Пневмосистема в разборе:


Главной идеей было использовать для каждого двуходового цилиндра по 4 клапана, которые перекрестно соединены. Когда мы открываем клапан для наполнения цилиндра с одной стороны открываем для стравливания клапан с противоположной стороны.

Для управления клапанами решили использовать такой модуль с 8 реле, которых как раз хватает для 16 попарно-соединенных клапана, т.е. для 4 цилиндров.



Орудия

Главный молот. Над дизайном главного молота-кирки думаем и спорим.


В качестве пил мы решили использовать двигатели кошения и ножи от Robomow. Во-первых ножи сделаны из прочной стали, а двигатели дают хороший момент и количество оборотов. Во-вторых Robomow согласились нас спонсировать ими.

Робот, различающий препятствия

Перед сборкой интеллектуального устройства обдумывают его внешний вид и принцип передвижения. Оптимальный вариант – использование гусеничной цепи (как в танке).

Такими роботами легче управлять, и они способны передвигаться по любому типу поверхности. Снять гусеницы, моторчик и редуктор можно с игрушечного танка.

Инструменты и запчасти

Перед созданием робота следует подготовить:

  • микроконтроллер (ATmega 16 в корпусе Dip-40);
  • керамические конденсаторы 0,1 мкФ, 1 мкФ, 22 пФ;
  • резисторы на 25 Вт номиналом 10 кОм (1 единицу) и 220 Ом (4 штуки);
  • диод 1N4004;
  • L7805 в корпусе ТО-220;
  • паяльник;
  • инфракрасные диоды (2 шт.);
  • фототранзисторы, способные реагировать на длину ик-лучей;
  • резонатор кварцевый на 16 МГц;
  • мультиметр;
  • радиодетали;
  • гусеницы и мотор от игрушечного экскаватора, танка.

Работа с платой

Для обеспечения питания микроконтроллера подбирают стабилизатор напряжения. Оптимальный выбор – микросхема L7805, дающая на выходе стабильные 5 В. Дополнением к ней идут конденсаторы для сглаживания напряжения и диоды, защищающие от переполюсовки.

Далее осматривают корпус контроллера MK-Dip и выделяют в нем узлы:

  • вывод Reset, подтянутый резистором к «плюсу» источника питания;
  • электролит на 1000 мкФ для защиты от скачков напряжения;
  • кварцевый резонатор и конденсаторы, которые нужно располагать вблизи от выводов Xtal1 и Xtal2.

Робот, различающий препятствия

Управление двигателями

В приспособлении используется микросхема L293D со встроенными диодами, которые защищают систему от перегрузки. Она имеет 2 канала, что позволяет подключить сразу 2 двигателя. Моторчики на плате запрещено присоединять напрямую к МК. Контакт обеспечивается с помощью ключевых транзисторов.

Во время работы возможен нагрев микроэлектронного устройства. Для отведения тепла предусмотрены ножки GND, которые следует распаивать на контактной площадке.

Установка датчиков препятствий

Ориентирование робота в пространстве обеспечивает простой инфракрасный датчик. Он состоит из диода, способного излучать в инфракрасном диапазоне, и фототранзистора для приема лучей. В отсутствии преграды перед механизмом транзистор закрыт.

При его приближении к мебели, стене, элементы улавливают тепло. Транзистор открывается, что активирует течение тока по цепи и побуждает устройство изменять траекторию движения.

Датчики устанавливают на передней части платы, подключая их с помощью проводов к основной схеме. По бокам от основы располагают гусеничный механизм.

Прошивка робота

Для работы устройства требуется программа, которая позволит снимать показания с датчиков и управлять двигателями. Простым роботам ее пишут с использованием языка программирования Си. Он представляет собой набор функций, вызывающих друг друга для дополнения.

Прописывая команды, следует учесть, что по инструкции у робота 2 датчика. Если на 1 из фототранзисторов поступает свет от инфракрасного диода, механизм начинает движение назад, отъезжая от препятствия. Он разворачивается и снова едет вперед.

Наличие преград следует проверять справа и слева, что прописывается с помощью команд. Алгоритм работы можно усовершенствовать, задав командную строку, что делать при возникновении угрозы прямого столкновения.

Улучшить готовый механизм позволит энкодер, который распознает положение робота в пространстве. Для информативности в дальнейшем устанавливается дисплей, на котором будет отображаться отладочная информация, расстояние до препятствий и другие нужные сведения.

Робот, различающий препятствия

Нейронная сеть

Нейросеть Google превращает обычные изображения в картины Николая Рериха, узнавая в силуэтах облаков птиц, людей и даже храмы.

Нейросеть Google превращает обычные изображения в картины Николая Рериха, узнавая в силуэтах облаков птиц, людей и даже храмы.

Картезиански беспощадное сознание Терминатора заключено в самообучающемся компьютере, выстроенном по образу и подобию нейросети Skynet. У каждого Т-800 существует два режима работы: Hive и Rogue. В первом терминаторы синхронизируются с другими моделями и нейронным процессором Skynet, получая информацию от единой сети. Шаги в этом направлении делают сотрудники MIT, в 2014 году разработавшие программу совместного обучения для машин — чтобы несколько сервисных роботов делились полученными знаниями и могли обмениваться ими в любой момент.

Во втором — в режиме «непослушания» — Т-800 переходит к процессу самообучения — и каждая его прогулка превращается в этнографическое путешествие. В этом режиме его сознание сталкивается, в соответствии с мифологией франшизы, с опасными вопросами и искушениями: зачем я существую, какой высшей цели я служу? Skynet охранял киборгов от таких, безусловно, важных вопросов при помощи «внутренних блокираторов» — их обошли повстанцы в «Терминаторе-2: Судный день» и сумели укротить Т-800.

Главный претендентом на уровень осознанности Skynet является сеть, созданная учеными в лаборатории Google X. И, если Skynet хвастливо представляется «Мы Skynet, самый совершенный искусственный интеллект в пределах известной Вселенной», сеть Google X пока лишь занимается делом, приличествующим каждому ребенку: угадывает в очертаниях облаков привычные фигуры.

Впервые представленная в 2012 году нейросеть, состоящая из 1000 компьютеров и 16 000 ядер, сама научилась распознавать кошек и человеческие лица, а в 2015 году настолько расширила библиотеку известных ей изображений и концептов, что смогла выявлять знакомые образы даже в цифровом шуме.

Нейронная сеть Google продолжает заниматься самообучением и направлена на распознавание изображений — в отличие от Skynet, по официальной мифологии обретшего самосознание через три года после запуска в 1997 году и тогда же решившего, что пришло время для очистительной войны.

Интерфейсы взаимодействия «человек — робот»

Системы ввода/вывода, которыми оснащают промышленных и гражданских роботов, зависят от механизмов углубленного обучения (deep learning). Т-800, отличающийся дьявольски развитым логическим мышлением, всегда верно определяет ситуацию, в которой находится, способен лгать, изменять тональность голоса и строить планы иезуитской точности. Достичь уровня его осознанности пока не способен ни один сервисный робот. Робототехникам пришлось потратить много лет, чтобы спроектировать нелинейное взаимодействие человека и робота — чтобы последние могли принимать решения и представлять информацию, соотносясь с контекстом взаимодействия и статусом того, кто обращается за информацией.

Роботы для детей

Робототехника позволяет школьникам развивать творческие навыки и знакомить с техническими терминами. Освоив принципы конструирования lego-роботов (как правило, в школах робототехники используют для обучения lego-платформы), дети учатся разбираться в новых технологиях и осваивают азы востребованной профессии.

Ребятам будет интересно самостоятельно построить или поучаствовать в сборке:

  • механических насекомых, которые передвигаются, светятся в темноте;
  • квадропода (4-хногого шагохода) по специальным чертежам;
  • умных робоживотных, которые могут передвигаться по заданной траектории;
  • робота-колобка для накопления солнечной энергии;
  • настоящей роботизированной руки для игры на барабане и других манипуляций.

Как собрать робота самостоятельно в домашних условиях: от простого к сложному

Роботы заменяют людей на производстве и в быту, трудятся в опасных условиях. Андроиды, напоминающие человека, работают, как правило, в качестве промоутеров, а промышленные машины настроены на точное выполнение функций. Их разработкой занимаются специалисты.

Домашних же мастеров интересует вопрос, как сделать робота из подручных средств. Оригинальные механизмы можно сконструировать самостоятельно и запрограммировать на реализацию несложных задач.

Как сделать робота самостоятельно

Питание

Робот «Атлант» освобожден потому, что носит с собой свою собственную зарядку

Лишь несколько существенных ограничений способны расстроить план по постройке Терминатора (не считая его некоторой старомодности и неуместности). В первую очередь — питание. В киновселенной вопрос подзарядки решается просто — киборг может 120 лет проработать на одной топливной ячейке, использующей изотопы иридия. Рэндел Флейкс, автор новелл по мотивам первого и второго фильмов, писал: «Терминатор может проработать 1095 дней в режиме постоянного включения 24 на 7. У него гарантированно будут случаться моменты экономии, когда потребление энергии падает на 40 процентов, а зрение переходит исключительно в инфракрасный режим». В реальности таких батареек с мощностью, достаточной для бодрого разгуливания, пока что не изобретено. Только в 2015 году разработанный студией Boston Dynamics человекоподобный робот «Атлант освобожденный» обзавелся портативным источником питания, позволяющим отключать его от проводного электричества.

Демонстрация экзоскелетов реально существующей компании Cyberdyne

Впрочем, главное условие для постройки Терминатора уже выполнено. Компания Cyberdyne, которая по сюжету франшизы спроектировала Skynet, существует в действительности c 2004 года. Ее директор, доктор Санкай, разрабатывает экзоскелеты под названием Robot HAL, с удовольствием фотографируется с макетами Т-800 и знает — для создания эффективного робота можно обойтись и без харизматичного актера. Правда, он сознательно ограничивает рабочие интересы компании медицинскими и сервисными роботами, но в публичных интервью порой со знанием дела ссылается на название компании.

Читайте также: