Как сделать ретранслятор в ksp

Обновлено: 18.05.2024


Под Точкой Контрольного Управления подразумевается функция, которой обладают некоторые Командные Модули; а также особые корабли, обладающие хотя бы одним таким модулем и выполняющие требования для его работы. Такой корабль способен управлять другим/-ми кораблем/-ми в полной автономии от Центров Слежения на Кербине.

Управляющий корабль (Точка Контрольного Управления, хозяин) должен иметь:

  • Командный Модуль, поддерживающий функцию "Точка Контрольного Управления"
  • Если этот модуль обитаемый, то требуется 1 пилот или более в кабине этого модуля; точное количество указано в таблице ниже
  • Если этот модуль необитаемый (Remote Guidance Unit), то обозначенные на нем требования к количеству кербалов распространяются на весь текущий корабль
  • Антенна/-ы типа Ретранслятор, достаточного диапазона

Управляемый объект (подчиненный) в свою очередь должен иметь:

  • Командный Модуль с функцией "Возможно Дистанционное Пилотирование"
  • Если модуль обитаемый, то в нем должен находится кербал (ученый или инженер)
  • Антенна/-ы любого типа, достаточного диапазона

Если Командный Модуль, обитаемый ученым или инженером и находящийся вне диапазона Центра Слежения, подключить к управляющему кораблю, то появится возможность добавлять и изменять Маневровые Узлы. Однако САС не будет передаваться; чтобы её получить нужно дополнительное наличие беспилотного Командного Модуля на управляемом корабле (или пилота, - но уже будет прямым управлением).

Управляющий корабль не может работать совсем без пилотов, ему потребуется сигнал от Центра Слежения на Кербине - и в этом случае он будет работать как Ретранслятор контроля с Кербина, а не как автономная Точка Контрольного Управления.

Связь будет построена или перестроена автоматически, как только управляемый корабль (снабжаемый электричеством) окажется внутри диапазона управляющего корабля.

Ниже приведен список Командных Модулей, которые могут применятся для построения Точкек Контрольного Управления, необходимое количество пилотов и возможности опциональной капсуляции сигнала через дополнительные корабли-Ретрансляторы, для увеличения диапазона (Multi-Hop):

Первая сеть ретрансляторов

В прошлой статье с расчётами дальности антенн собранный из топовых антенн мощный ретранслятор был отправлен на высокоэллиптическую полярную орбиту. Это работает, когда уже есть доступ к высоким технологиям и включена опция «Extra Groundstations»: дополнительные наземные ретрансляторы.

Здесь будет рассмотрена ситуация в начале карьеры: предустановка «Hard» (модификатор дальности антенн 0.65), дополнительные наземные ретрансляторы выключены, второй уровень исследовательского центра ещё не построен (его стоимость 902 000).


Первые ретрансляционные антенны HG-5 были изучены ещё в Basic Science (4-й уровень, 45 науки). Но полноценный спутник, в котором будет свой источник электричества и SAS хотя бы первого уровня, можно построить начиная с технологии Electrics за 90, где есть беспилотный модуль OKTO и солнечная панель.




Будем решать проблему отсутствия связи около Кербина везде, кроме прямой видимости с космическим центром. Связь будем делать не только для спутников, но и для самолетов. Особенность самолетов в том, что на них нельзя поставить раскладывающиеся антенны, их сломает потоком воздуха. Можно ставить только Communotron 16-S, который не имеет параметра Combinable, т.е. невозможно увеличить его дальность путём установки нескольких антенн.

Но прежде чем мы начнём что-то строить, надо определиться, какой мощности и на какую орбиту будем выводить спутники, чтобы внезапно не оказалось, что выведенные на высокую орбиту (откуда больше наземная зона покрытия) ретрансляторы не достают до самолётов в атмосфере или запаса скорости не хватает для скругления орбиты на нужной высоте. Выполним расчет исходя из традиционной схемы трех ретрансляторов, разнесенных по орбите на 120 градусов, когда минимум один спутник всегда имеет связь с космическим центром.




Под спойлером описание Excel таблицы с расчетами.

Для расчета орбит характеристики планет сведены в таблицу (лист Orbits). Под таблицей в выпадающем списке в колонке A можно выбрать интересующую планету, в колонки C и D ввести значения апоцентра и перицентра, и получить в последующих колонках скорость в апоцентре, скорость в перицентре, период обращения в секундах и других единицах. Также рассчитывается область на поверхности планеты, с которой будет доступна связь со спутником: максимальная (прямо под спутником) и минимальная (между двумя спутниками) широта местности, максимальное расстояние от спутника до поверхности и расстояние между двумя спутниками. Всё это при условии, что три спутника расположены в экваториальной плоскости в 120 градусах один от другого (по углам равностороннего треугольника). Ниже приложена иллюстрация. Если для трех спутников задать апоцентр меньше радиуса, в колонке с минимальной широтой будет ошибка. Это значит, что области видимости спутников с поверхности не перекрываются, и сами спутники тоже друг друга видеть не будут. Количество спутников можно изменить на 4 (по углам квадрата) в ячейке A63. Широты на местности и расстояние между спутниками будут пересчитаны. Для добавления новой строки с расчетами надо копировать существующие строки, начиная со строки 64, тогда будут правильно прописаны формулы и выпадающий список с планетами.




Таблица расчета дальности антенн была модифицирована (лист Antennas). Вместо жёстко заданных классов теперь можно выбрать в выпадающем списке конкретную антенну. Добавлены две колонки для классов 6-7 из мода Interstellar. Расчет дальности от количества антенн теперь учитывает параметр Combinable (в отличие от стоковых антенн, где его нет только у Communotron 16-S, многие антенны из мода не увеличивают свою дальность с увеличением их количества). В ячейке E33 из выпадающего списка можно выбрать научный эксперимент, в колонке I таблицы с параметрами антенн будет показано количество электричества, необходимого для передачи. В ячейку I33 можно вести генерируемую мощность, необходимый запас будет пересчитан. Подробно об использовании таблицы в предыдущей статье .




Ещё есть лист Engines с параметрами двигателей. В нём можно выполнить расчет тяги и удельного импульса для набора разных двигателей. В ячейках M2-M3 из выпадающего списка выбрать двигатель, в ячейках N2-N3 указать их количество. В ячейках M6-Q6 будут расчетные значения, их можно добавить в таблицу для последующего использования на листе Spacecrafts.






Но последние две страницы нам сейчас не понадобятся, конструкция будет достаточно простой.

Рассчитаем круговую орбиту периодом 1 час 30 минут. Перицентр D64 приравняем к апоцентру C64, в С64 введем значение 1000.


Подбором параметра С64 установим период G64 равным 5400 секунд. Полученный результат округлим до одного метра: 776.575 км.


Теперь рассчитаем переходную орбиту с апоцентром 776.575 км и периодом обращения 2/3 от круговой – 1 час. Это нужно для точного разведения спутников на угол 120 градусов по орбите, они будут одновременно отделены на переходной орбите и по очереди будут скруглять орбиту в апоцентре. Скопируем строку, пропишем в перицентр D65 некое значение 500, подбором параметра D65 установим период G65 равным 3600 секунд. Получим перицентр 124.471 км. По разнице скоростей в апоцентрах круговой и переходной орбит (E64-E65) определяется необходимый запас скорости для скругления.




Максимальное расстояние до поверхности получилось 1239 км. Пропишем на листе Antennas в ячейку A15 значение 1.24, получается, что одной антенны HG-5 недостаточно для связи с Comm 16-S. Двух достаточно, но уровень сигнала будет 1.4%, поэтому на ретрансляторе будет четыре антенны для уровня сигнала 19.4%. Спутники будут видны с поверхности до широты 64 градуса прямо под спутником и до 29 градусов между ними. Не очень хороший результат, спутники на стационарной орбите накрывают поверхность до 80 и 70 градусов соответственно, но исследовательский центр ещё не достроен и технологии с антеннами третьего класса недоступны, будем обходиться тем, что есть.



Приступим к постройке спутника. Основа – беспилотный модуль OKTO, единственный доступный на данный момент (шарик за отсутствием SAS не рассматриваем). Бак Oscar B и двигатель LV-1. Четыре антенны, четыре солнечные панели, четыре батарейки. Cтолько батареек не нужно, мне просто нравится симметрия х4 и зелёные лампочки :) Три таких спутника поместим под обтекатель, на центральный добавим термометр для выполнения контрактов «передай с орбиты данные». Топлива в баках оставим половину, этого хватит на довыведение и на последующее сведение с орбиты, когда с изучением новых технологий необходимость в этих ретрансляторах пропадёт. Также под обтекателем поставим ещё один модуль OKTO. Это нужно чтобы вторая ступень после отделения спутников на переходной орбите осталась управляемой и сама себя свела с орбиты. Скажем «НЕТ» синдрому Кесслера :)




Вторая ступень – двигатель LV-909 и баки FL-T400+200, первая – двигатель LV-T45 c баками FL-T400x3 и ТТУ RT-5, установленными на 30% от максимальной мощности.

Видео с выведением:

Скриншоты из видео с комментариями:

На модуле OKTO доступен только один режим SAS



Удерживать направление Prograde приходится руками, и в плотных слоях атмосферы из-за большого обтекателя надо внимательно следить, чтобы отклонение было минимальным, иначе ракета опрокинется.



К сбросу первой ступени это уже не представляет каких-то затруднений.



После выхода за пределы атмосферы сбрасывается обтекатель.



Вторая ступень выходит на низкую орбиту.



Спутники отделились на переходной орбите.



Вторая ступень выполняет сведение с орбиты



Антенны ретрансляторов развернуты.



Спутники по очереди выполняют переход на рабочую круговую орбиту.



Добиться точного совпадения апоцентра и перицентра расчетному значению сложно. Но нам нужно точное значение периода обращения, поэтому окончательной коррекцией добиваемся периода 1 час 30 минут. Тягу двигателя надо установить в минимальные 0.5% для точности. Kerbal Engineer Redux обязателен, если хочется точного выведения.

Краткое руководство пользователя Remote Tech 2


[spoiler= Полезная информация.]Помните, что антенны довольно хрупкие штуки и длинный штырь гибкой Communotron 16 легко оторвет набегающим потоком воздуха, а вот плоская DP-10 выдержит атмосферный разгон с легкостью (главное чтоб не отгорела :) ). Вот только ей может не хватить радиуса действия… Как всегда, нужно находить компромиссы и различные технические решения, от узконаправленных антенн тарельчатого типа, до ретрансляторов, фэйрингов и проч.[/spoiler]

2.) Но кроме антенны, как вы понимаете, нужен еще и беспилотный модуль – собственно тот самый, дистанционно управляемый модуль-дрон, что «дергает за ниточки» сервомоторы нашего корабля. Самый простой – Stayputnik – можно найти в соседнем разделе «Basic Science» («Научные основы») . Стоимость 300 кербаксов за штуку, потребляет 1.7 единиц энергии в минуту (при конструировании корабля, обратите внимание на то, что у разных деталей потребление электричества зачастую указано для разных промежутков времени. Учтите это при расчете запасов и выработки электроэнергии), обладает встроенным аккумулятором в 10 единиц электроэнергии и простейшим автопилотом удержания направления.



[spoiler= Полезная информация. ]Немного забегая вперед. Впоследствии, когда ваша наука выдвинется на передовые рубежи, а мысль пронзит пространство. В общем на 6 уровне науки (тот где все по 300), в разделе «Unmanned Tech» («Беспилотные технологии») можно будет открыть перк «Probe Core Upgrade», что позволит добавить во все модули-дроны встроенную всенаправленную (подробнее о всенаправленных и узконаправленных антеннах читайте ниже в разделе "Антенны") антенну, радиусом эффективной связи в целых 3 км. Так что вы без проблем сможете строить беспилотные самолетики и кружить над KSC безо всяких антенн. Надо сказать эта фишка все же имеет практическое применение, к примеру, если запуск спутника осуществляется пилотируемой миссией (ну или беспилотной, сопровождая спутник до целевой орбиты или пункта назначения) и по замыслу (из соображений экономии денег или массы) в его конструкции антенна не предусмотрена. Первые маневры после отстыковки спутника можно будет осуществить без проблем. Но в дальнейшем, для маневрирования им, вам придется подогнать к спутнику корабль-ретранслятор.
[/spoiler]

3.) Для дальних странствий, вашему кораблику потребуются антенны повышенной мощности, типа раскладных Communotron 16 или Comms DTS-M1 (самая доступная из узконаправленных). Для активации антенн вам их придется разложить (хотя вы, естественно, можете сделать это еще в ангаре. Однако не рекомендую, есть небольшой шанс, что отломятся при загрузке крафта), причем следует учесть, что делать это нужно на высоте, где сопротивление атмосферы при ее прохождении кораблем не сможет им повредить. А в случае с DTS-M1, ее еще нужно будет нацелить через контекстное меню.


4.) Как только вы наплодите ваших беспилотных посланников, вам потребуется расположить в системе группировку спутников (некоторые наземными станциями балуются. Так тоже можно, но я не приверженец) релейной – ретрансляторной сети, для поддержания устойчивой связи между KSC и разлетающимися по всей системе спутниками.



[spoiler= Полезная информация. ]Планируйте релейные сети заранее, во избежание «затенений» (зоны без связи. Образуются по разным причинам – недостаточный радиус антенн релейной сети, перекрытие прямой видимости объекта крупным небесным телом, неверный выбор антенны – например одна направленного типа, указывающая на конкретный объект узким лучом и не захватывающая соседние объекты), экономических потерь на дополнительные запуски новых спутников или запчастей для старых, корректировку орбит, ненужного геммороя.
[/spoiler]

В модификации представлено два типа антенн: «Тарелки» - узконаправленные, связь устанавливает с конкретным объектом, выбираемым через контекстное меню и в пределах узкого конуса, идущего по направлению к этому объекту. Чем больше радиус действия антенны, тем меньше основание конуса и «Всенаправленные» (Омни): работают со всеми объектами, попадающими в сферу действия данной антенны.


Этот тип антенн излучает и принимает сигнал во все стороны с равным усилением, так что вам нет необходимости настраивать их направление. Их радиус действия значительно меньше, чем у большинства тарелок, однако они идеально подходят для связи орбитальной группировки конкретного тела. [spoiler= Полезная информация. ]В KSC установлено несколько тарелок, что могут «вести» множество различных целей (настраиваются автоматически, тыкать вручную не нужно) в радиусе до 75 Мега метров. По сути, KSC представляет собой одну большую Омни антенну с радиусом эффективной связи в 75 Мм. Минмус, к примеру, обращается вокруг Кербина по круглой орбите в 47 Мм. высотой. Сфера влияния (SOI) Кербина составляет 84.16 Мм. Т.е. до Минмуса антенны KSC «добьют», но если вы хотите запускать беспилотные миссии за пределы SOI Кербина, вам придется строить сеть ретрансляторов с антеннами большего радиуса действия. [/spoiler] Так как система Кербола обладает значительно меньшими размерами, чем наша с вами солнечная система, для симуляции "реалистичной" задержки сигнала, электромагнитные волны в RT обладают скоростью меньшей, чем скорость света, что обеспечивает «реалистичную» задержку сигнала (время получения ответа оператором от дрона). [spoiler= Полезная информация. ] Если хотите, вы можете отключить задержку сигнала в файле настроек, что будет автоматически создан при первом запуске Игры с данной модификацией. В папке мода файлик RemoteTech_Settings.cfg, в строке EnableSignalDelay = True, True заменить на False.
А еще вы можете поиграться со значением скорости света))). Допустим вы хотите «слегка» уменьшить задержку сигнала.
Тогда укажите значение скорости света 6Е+08 – задержка сигнала уменьшится в 2 раза
Еще уменьшить? 3Е+09 – в 10 раз меньше. 3Е+10 – в 100 раз. [/spoiler] Наличие канала связи означает возможность командного центра (KSC или командной станции) передать управляющий сигнал адресату. Данный канал связи может быть не прямым, а быть передан через спутники-ретрансляторы опосредованно. Связи между отдельными такими спутниками в рамках терминологии мода именуются линками (links). Чтобы установить связь-линк между двумя отдельными узлами релейной сети, оба узла должны иметь на борту антенны достаточного радиуса (а в случае узконаправленных антенн, либо направлены непосредственно друг на друга, либо находиться в конусе связи тарелок). Соответственно, чтобы между командным центром и целевым беспилотным аппаратом был установлен канал связи, необходимо, чтобы от командного центра до цели прямо или опосредовано через ретрансляторы была проведена непрерывная цепь линков. Этим замысловатым термином в рамках модификации обзывается любой модуль, что может принимать сигнал от командного центра – в частности любой стоковый беспилотный модуль. Управлять процессором вы можете только тогда, когда между ним и командным центром установлен канал связи. Кроме того, на больших расстояниях от командного центра (свыше SOI Кербина) помните о задержке сигнала – команды будут выполняться не сразу. Однако, в процессоре также есть небольшой полетный компьютер, что может быть настроен на выполнение простых задач во время перебоев связи. Пожалуй самая сложная и интересная часть Remote Tech! Отправляя свой беспилотный аппарат исследовать космические просторы, вскоре вы обнаружите, что управлять кораблем становится все сложнее из-за возросшего времени отклика. А уж посадка, даже на близлежащую Дюну, когда от вас требуется незамедлительная реакция на ситуацию, а дрон реагирует лишь спустя пару минут, в 90% будет зафейлена. На этот случай в каждый беспилотный модуль в RT установлен простой и незамысловатый, но функциональный автопилот, именуемый «Flight Computer» («Полетный компьютер»).


Найти его можно, тыкнув по маленькой зеленой иконке калькулятора в левом верхнем углу экрана, прямо под указателями варпа и даты. Само окошко Компьютера можно условно разделить на две части: слева кнопки и пиктограммы для задания программ, справа выводятся данные о текущих маневрах (если навести указатель мыши на любую из кнопок или окошек – через пару мгновений всплывет пояснение, о назначении и использовании этого элемента). Чтобы открыть правую часть Компьютера, щелкните кнопку «>>» в правом нижнем углу окошка.

Самый элементарный способ применения – как обычно на орбитальной карте создать маневр, затем щелкнуть в Компьютере кнопку NODE – это развернет нос корабля в направлении узла маневра. Затем, щелкнуть EXEC, что даст команду Компьютеру на выполнение прожига выбранного маневра в указанное время и с указанной длительностью. Двигатель при этом должен быть запущен (тяга на нуле, естественно), ну или предварительно нужно дать команду компьютеру на запуск движка перед прожигом.

Чтобы было понятнее, как работает сия забавная штука, предлагаю рассмотреть работу Компьютера на примере посадки на планету. Стоит отметить, что хотя RT самодостаточен, какой-либо информационный мод (например Kerbal Engineer Redux, VOID или MechJeb) значительно упростит навигацию и планирование. RealChutes и SmartParts позволят заменить условия срабатывания парашютов просто по времени, на триггеры по заданной высоте.

Итак. Даже в упрощенной физической модели KSP посадка достаточно сложный процесс, требующий определенных навыков пилотирования. Чуть раньше необходимого включил двигатели, слегка перерасходовал топливо и не хватило для торможения до безопасной скорости, чуть запоздал с парашютами… Посадка обязывает пилота принимать быстрые и верные решения в реальном времени. А RT не очень-то позволяет игроку летать в реальном времени.

Посадка на атмосферные тела, конечно, проще. В нужное время выпустил парашюты и уповай на то, что инженер правильно рассчитал их количество. Так что с такой посадкой автопилот RT справляется без проблем.

Начнем. Мы на низкой орбите Кербина, у нас в руках небольшой беспилотный аппарат, связь с ним осуществляется через спутниковую сеть, но на аппарате установлены только Comms DTS-01, а значит при входе в атмосферу в активированном состоянии их оторвет. Придется антенны сложить, но в любом случае у нас возникнет потеря связи. Определяем, куда собираемся приземляться, устанавливаем точку маневра. Щелкаем NODE, а затем EXEC. Видим, что в окошке Компьютера появилось выполнение маневра и бежит счетчик времени до прожига (кстати, в нижней левой части интерфейса Компьютера, есть ползунок тяги, коим можно регулировать уровень тяги при выполнении маневра, а также окошко, в которое можно вбить конкретное значение дельты, что мы хотим прожечь. В нашем случае просто выставляем тягу на 100%).


После завершения прожига, нужно отстрелить бак с двигателем, закрыть антенны и солнечные панели, чтобы не оторвало в атмосфере, а также развернуть кораблик щитом вниз. Для этого в RT есть возможность выставить конкретную задержку выполнения действия. В правой части интерфейса, в правом нижнем углу есть небольшое окно. Вписываем туда требуемое время задержки. Допустим до маневра осталось 4 минуты. Прожиг займет около 10 секунд. Ну и прибавим секунд 30 для перестраховки. Значит в этом окошке нужно указать задержку в 280 секунд (проще вписать 4m40s – где s - секунды, m – минуты, h – часы, d – дни, w – недели, y – годы. Как выставить месяц, я не нашел. Обозначение секунд «s» указывать не обязательно. Время задержки и операции в самом Компьютере можно делать на паузе), жмем Enter. Таким образом мы установили время задержки до любой следующей команды, что мы прикажем. Это может быть включение следующей стадии, активация через экшн группу, например, раскладки солнечных панелей, включение SAS, или изменение удержания вектора. Отстрел бака и складывание деталей лучше нужно разместить на экшн группах в ангаре. В тестовом примере это 2,3,4. Последовательно нажимаем кнопки экшн групп и видим, как в интерфейсе Компьютера появляются соответствующие задачи, с выставленной задержкой в 4 минуты 40 секунд. При этом сами действия в реальном времени не происходят.


Осталось задать команду на разворот кораблика щитом в ретроград. Для этого в Компьютере есть целая панель кнопочек. Как вы видите на скрине, в интерфейсе слева есть 6 кнопок с непонятными аббревиатурами и знаками +/-, длинная кнопка Custom, а ниже еще три строчки, с возможностью вписать какие-то цифры. Это аналог стокового SAS - удержания векторов.

GRD+ - проградный вектор

GRD- - ретроградный вектор

RAD+ - радиальный вектор

RAD- - обратно радиальный вектор

NRM+ - нормальный вектор (сорри за название, не знаю как они зовутся по-русски)

NRM- - обратно нормальный вектор

Custom - возможность ручной настройки конкретного направления по трем осям в пределах 360 градусов. Здесь лучше поэкспериментировать, чтобы понять, какая ось соответствует какому направлению в игре. Как это адекватно объяснить на словах в статье я не придумал. Соответственно три нижних строчки как раз за это и отвечают.

Но ведь, резонно скажете вы, направление, например, в проград относительно поверхности планеты и, скажем, относительно орбиты - есть разные вещи? Все верно. Для этого, над кнопкой Custom есть еще четыре кнопки: RVEL - отсчет относительно скорости цели, ORB - отсчет относительно орбитальной скорости, SRF - относительно планеты, TGT - проград направлен точно в цель, соответственно. По умолчанию выставляется значение ORB, так что его нужно переключить на нужное по желанию. Раз уж мы описываем кнопки, на панели еще осталась кнопка KILL - это аналог удержания направления (левый верхний "кружочек") стокового SAS. Гасит любые колебания крафта.

Итак нам нужно развернуться по ретроградному вектору (задержку пока не трогаем, пусть разворот произойдет после того, как сработают все предыдущие команды). Щелкаем "SRF", а затем "GRD-". В Компьютере появилась запись с командой на удержание ретроградного вектора, относительно поверхности планеты.

АНДРОМЕДА

АНДРОМЕДА Kerbal Space Program, Kcehom, Длиннопост, Видео

наконец то решили что одной звездной системы мало и решили на орбите кербина построить гигантский звездолет для того, что бы колонизировать ближайшую звездную систему CIRO в которой есть новые планеты земной группы

ТТХ звездолета просто потрясают

вес свыше 11000 тонн (11 килотонн)

топливо - катализированный водой карборунд

на борту есть спутниковая группировка ретрансляторов

огромная ретрансляционная тарелка класса ХИМЕРА

2 сателита для транспортировки разных грузов на орбите

1 грузовой SSTO для спуска с орбиты больших контейнеров с деталями базы и имеющий на борту подьемный кран и канадарм

11 контейнеров с деталями для базы и транспорта и грузовой порт с краном и канадармом

топливные баки для дозаправки сателитов обьемом 250 и 300 тысяч литров жидкого топлива и окислителя

KSP - KCEHOM - ретрансляторы - ремейк


- выкладывая свои крафты оставляйте модлист. Если включили такие моды как RO или RP-0, то требуемые для них модификации можно не писать.

- выполняйте правила Пикабу.

- опытные игроки, будьте готовы к тому что в сообществе могут быть новички. Не проявляйте агрессию, даже если что-то вам покажется "нубским".

- у нас не матерятся.

у вас сбоку от панели варпа есть еще панель. откуда она? или это мод? если мод , то можно название.

Да как бы много модов
Обведи скрин что за панель тебя интересует

у мну рейтинга для картинок не хватает. верхний левый угол где время миссии. рядом вторая панель с и изображением сигнала как в мобилке, иконка земли , и стрелка вверх. так понятно про что я говорю?

у меня этого нет. версия ксп 1,5,1 оф из стима

надо смотреть в чем сбой

т.е. ты хочешь сказать что это по умолчанию есть у всех?

все облазил. нету этой панели хоть тресни. :(

Хотя еесли честно
Я нне совсем понимаю о какой панели ты говоришь

Там у тебя я так понимаю красный спутник правильно. Попробуй по переключать направление сигнала
Переключи на - вся сеть

и еще вопрос. я вывел также три ретранслятора не кербостационарную (2868 км) . ретранслятор ра15 помоему( точно не помню) , как настроить автоматическую связь? а то при каждом старте приходится вручную указывать спутник-ретранслятор, что кстати не гарантирует связь с цуп т.к. приходится задавать всю цепочку вручную. а это утомляет.

По умолчанию автоматически

Что то мешает
Удали ммо Remote Tech

У меня он тоже глючит

И еще бывают сбои из за scatterer

Мод стоит Remote Tech
Поидее всё должно в автомате

а можно название по аглицки, ну чтоб в ckan найти?

Мне нужно название мода на отображение земли и космоса. Для друга естественно

не понял - еще раз - поподробнее что надо

Ну, облака, вид земли не стоковый у вас.


Читайте также: