Как решать уравнения с x4

Обновлено: 05.07.2024

В общем случае решение уравнения четвёртой степени осуществляется с использованием методов решения уравнений для высших степеней, например, методом Феррари или с помощью схемы Горнера. Но некоторые уравнения 4-ой степени имеют более простое решение.

Существует несколько особых типов уравнений четвертой степени, со способами решения которых вы познакомитесь ниже:

  • Биквадратное уравнения $ax^4+bx^2+c=0$;
  • Возвратные уравнения вида $ax^4+bx^3+cx^2 +bx+ a=0$;
  • Уравнения вида $ax^4+b=0$.

Схема решения уравнения

Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x - x 1 · P n - 1 ( x ) = 0 . Здесь x 1 является корнем уравнения, а P n - 1 ( x ) представляет собой частное от деления x n + a n x n - 1 + … + a 1 x + a 0 на x - x 1 .

Подставляем остальные выписанные делители в P n - 1 ( x ) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде ( x - x 1 ) ( x - x 2 ) · P n - 2 ( x ) = 0 .Здесь P n - 2 ( x ) будет частным от деления P n - 1 ( x ) на x - x 2 .

Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x - x 1 x - x 2 · … · x - x m · P n - m ( x ) = 0 . Здесь P n - m ( x ) является многочленом n - m -ной степени. Для подсчета удобно использовать схему Горнера.

Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

У нас в итоге получилось уравнение P n - m ( x ) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

Покажем на конкретном примере, как применяется такая схема решения.

Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 - x - 3 = 0 .

Решение

Начнем с нахождений целых корней.

У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , - 1 , 3 и - 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 - 1 - 3 = 0 , значит, единица будет корнем данного уравнения.

Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 - x - 3 на ( х - 1 ) в столбик:

Значит, x 4 + x 3 + 2 x 2 - x - 3 = x - 1 x 3 + 2 x 2 + 4 x + 3 .

Перебираем возможные делители дальше, но подставляем их в равенство x 3 + 2 x 2 + 4 x + 3 = 0 :

1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 ( - 1 ) 3 + 2 · ( - 1 ) 2 + 4 · - 1 + 3 = 0

У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный - 1 .

Делим многочлен x 3 + 2 x 2 + 4 x + 3 на ( х + 1 ) в столбик:

x 4 + x 3 + 2 x 2 - x - 3 = ( x - 1 ) ( x 3 + 2 x 2 + 4 x + 3 ) = = ( x - 1 ) ( x + 1 ) ( x 2 + x + 3 )

Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с - 1 :

- 1 2 + ( - 1 ) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 ( - 3 ) 2 + ( - 3 ) + 3 = 9 ≠ 0

Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

Оставшиеся корни будут корнями выражения x 2 + x + 3 .

D = 1 2 - 4 · 1 · 3 = - 11 < 0

Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = - 1 2 ± i 11 2 .

Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

x i коэффициенты многочлена
1 1 2 - 1 - 3
1 1 1 + 1 · 1 = 2 2 + 2 · 1 = 4 - 1 + 4 · 1 = 3 - 3 + 3 · 1 = 0

В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 - x - 3 = x - 1 x 3 + 2 x 2 + 4 x + 3 .

После нахождения следующего корня, равного - 1 , мы получаем следующее:

x i коэффициенты многочлена
1 2 4 3
1 1 2 + 1 · ( - 1 ) = 1 4 + 1 · ( - 1 ) = 3 3 + 3 · ( - 1 ) = 0

Далее мы приходим к разложению x - 1 x + 1 x 2 + x + 3 = 0 . Потом, проверив оставшиеся делители равенства x 2 + x + 3 = 0 , вычисляем оставшиеся корни.

Ответ: х = - 1 , х = 1 , x = - 1 2 ± i 11 2 .

Условие: решите уравнение x 4 - x 3 - 5 x 2 + 12 = 0 .

Решение

У свободного члена есть делители 1 , - 1 , 2 , - 2 , 3 , - 3 , 4 , - 4 , 6 , - 6 , 12 , - 12 .

Проверяем их по порядку:

1 4 - 1 3 - 5 · 1 2 + 12 = 7 ≠ 0 ( - 1 ) 4 - ( - 1 ) 3 - 5 · ( - 1 ) 2 + 12 = 9 ≠ 0 2 4 · 2 3 - 5 · 2 2 + 12 = 0

Значит, x = 2 будет корнем уравнения. Разделим x 4 - x 3 - 5 x 2 + 12 на х - 2 , воспользовавшись схемой Горнера:

x i коэффициенты многочлена
1 - 1 - 5 0 12
2 1 - 1 + 1 · 2 = 1 - 5 + 1 · 2 = - 3 0 - 3 · 2 = 3 12 - 6 · 2 = 0

В итоге мы получим x - 2 ( x 3 + x 2 - 3 x - 6 ) = 0 .

Проверяем делители дальше, но уже для равенства x 3 + x 2 - 3 x - 6 = 0 , начиная с двойки.

2 3 + 2 2 - 3 · 2 - 6 = 0

Значит, 2 опять будет корнем. Разделим x 3 + x 2 - 3 x - 6 = 0 на x - 2 :

x i коэффициенты многочлена
1 1 - 3 - 6
2 1 1 + 1 · 2 = 3 - 3 + 3 · 2 = 3 - 6 + 3 · 2 = 0

В итоге получим ( x - 2 ) 2 · ( x 2 + 3 x + 3 ) = 0 .

Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

Решим квадратное уравнение:

x 2 + 3 x + 3 = 0 D = 3 2 - 4 · 1 · 3 = - 3 < 0

Получаем комплексно сопряженную пару корней: x = - 3 2 ± i 3 2 .

Ответ: x = - 3 2 ± i 3 2 .

Условие: найдите для уравнения x 4 + 1 2 x 3 - 5 2 x - 3 = 0 действительные корни.

Решение

x 4 + 1 2 x 3 - 5 2 x - 3 = 0 2 x 4 + x 3 - 5 x - 6 = 0

Выполняем домножение 2 3 обеих частей уравнения:

2 x 4 + x 3 - 5 x - 6 = 0 2 4 · x 4 + 2 3 x 3 - 20 · 2 · x - 48 = 0

Заменяем переменные y = 2 x :

2 4 · x 4 + 2 3 x 3 - 20 · 2 · x - 48 = 0 y 4 + y 3 - 20 y - 48 = 0

В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = - 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = - 2 2 = - 1 и x = y 2 = 3 2 .

Ответ: x 1 = - 1 , x 2 = 3 2

Советуем также ознакомиться с материалами, посвященными решению кубических уравнений и уравнений четвертой степени.

Решение уравнений четвертой степени

Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.

Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.

Решение биквадратного уравнения

Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.

Решить биквадратное уравнение 2 x 4 + 5 x 2 - 3 = 0 .

Решение

Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:

2 y 2 + 5 y - 3 = 0 D = 5 2 - 4 · 2 · ( - 3 ) = 49 y 1 = - 5 + D 2 · 2 = - 5 + 7 4 = 1 2 y 2 = - 5 - D 2 · 2 = - 5 - 7 4 = - 3

Следовательно, x 2 = 1 2 или x 2 = - 3 .

Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .

Ответ: x = ± 1 2 и x = ± i · 3 .

Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .

Решение

Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:

16 y 2 + 145 y + 9 = 0 D = 145 2 - 4 · 16 · 9 = 20449 y 1 = - 145 + D 2 · 16 = - 145 + 143 32 = - 1 16 y 2 = - 145 - D 2 · 16 = - 145 - 143 32 = - 9

Поэтому, в силу замены переменной, x 2 = - 1 16 или x 2 = - 9 .

Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .

Равносильные уравнения, преобразование уравнений

Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.

Решение возвратных уравнений 4 степени

Эти уравнения вида $ax^4+bx^3+cx^2 +bx+ a=0$ повторяют своими коэффициентами при младших членах коэффициенты при многочленах со старшими степенями. Для решения такого уравнения сначала делят его на $x^2$:

Затем заменяют $(x+\frac)$ на новую переменную, тогда $(x^2+\frac)=y^2-2$, после подстановки получаем следующее квадратное уравнение:

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

После этого ищем корни уравнений $x+\frac=y_1$ и $x+\frac=y_2$.

Аналогичным методом решаются возвратные уравнения вида $ax^4+bx^3+cx^2 +kbx+ k^2a=0$.

Данное уравнение – возвратное уравнение вида $ax^4+bx^3+cx^2 +kbx+ k^2a=0$. Поэтому разделим всё уравнение на $x^2$:

Произведём замену выражения $x+\frac$: $3(y^2-4)-2y-9=0$

Рассчитаем корни данного уравнения, они равны $y_1=3$ и $y_2=-\frac$.

Соответственно, теперь необходимо решить два уравнения $x+\frac=3$ и $x+\frac=-\frac$. Решение первого уравнения — $x_1=1, x_2=2$, второе уравнение не имеет корней.

Следовательно, корнями исходного уравнения являются $x_1=1, x_2=2$.

Уравнения вида $ax^4+b=0$

Корни уравнения такой разновидности находятся с помощью применения формул сокращённого умножения.

Решение уравнений четвертой степени по методу Феррари

Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 - B y 2 + A C - 4 D y - A 2 D + 4 B D - C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 - B + y 0 x 2 + A 2 y 0 - C x + y 0 2 4 - D = 0 , у которых подкоренное выражение является полным квадратом.

Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.

Найти корни уравнения x 4 + 3 x 3 + 3 x 2 - x - 6 = 0 .

Решение

Имеем А = 3 , В = 3 , С = - 1 , D = - 6 . Применим метод Феррари для решения данного уравнения.

Составим и решим кубическое уравнение:
y 3 - B y 2 + A C - 4 D y - A 2 D + 4 B D - C 2 = 0 y 3 - 3 y 2 + 21 y - 19 = 0

Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 - 3 · 1 2 + 21 · 1 - 19 = 0 .

Запишем два квадратных уравнения:
x 2 + A 2 x + y 0 2 ± A 2 4 - B + y 0 x 2 + A 2 y 0 - C x + y 0 2 4 - D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0

x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 - 1 2 x - 5 2 = 0

x 2 + 2 x + 3 = 0 или x 2 + x - 2 = 0

Корнями первого уравнения будут x = - 1 ± i · 2 , корнями второго х = 1 и х = - 2 .

Решение биквадратных уравнений четвёртой степени

Биквадратные уравнения $ax^4+bx^2+c=0$ сводятся к квадратным путём замены переменной $x^2$ на новую, например, на $y$. После замены решается новое полученное уравнение, а затем значение найденной переменной подставляется в уравнение $x^2=y$. Результатом решения будут корни уравнения $x^2=y$.

Решите уравнение $x(x-1)(x-2)(x-3)=24$:

Раскроем скобки в многочлене:

В таком виде становится очевидно, что в качестве новой переменной можно выбрать выражение $y=x^2-3x$, подставим её:

Теперь решим два квадратных уравнения $x^2-3x=-4$ и $x^2-3x=-6$.

Корни первого уравнения $x_1=4;-1$, второе решений не имеет.

Решение возвратного уравнения четвертой степени

Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0

х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:

A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0

Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 - 2 :

A x 2 + 1 x 2 + B x + 1 x + C = 0 A ( y 2 - 2 ) + B y + C = 0 A y 2 + B y + C - 2 A = 0

Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.

Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .

Решение

Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2 :

2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0

2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0

Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 - 2

2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 - 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0

Решим полученное квадратное уравнение:

D = 2 3 + 2 2 - 4 · 2 · 6 = 12 + 4 6 + 2 - 8 6 = = 12 - 4 6 + 2 = 2 3 - 2 2 y 1 = - 2 3 - 2 + D 2 · 2 = - 2 3 - 2 + 2 3 - 2 4 = - 2 2 y 2 = - 2 3 - 2 - D 2 · 2 = - 2 3 - 2 - 2 3 + 2 4 = - 3

Вернемся к замене: x + 1 x = - 2 2 , x + 1 x = - 3 .

Решим первое уравнение:

x + 1 x = - 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 - 4 · 2 · 2 = - 14 x 1 = - 2 - D 2 · 2 = - 2 4 + i · 14 4 x 2 = - 2 - D 2 · 2 = - 2 4 - i · 14 4

Решим второе уравнение:

x + 1 x = - 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 - 4 · 1 · 1 = - 1 x 3 = - 3 + D 2 = - 3 2 + i · 1 2 x 4 = - 3 - D 2 = - 3 2 - i · 1 2

Ответ: x = - 2 4 ± i · 14 4 и x = - 3 2 ± i · 1 2 .

Решение двучленного уравнения четвертой степени

Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .

Для решения этого типа уравнений применяются формулы сокращенного умножения:

A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A - 2 B A x 2 = 0 x 2 + B A 2 - 2 B A x 2 = 0 x 2 - 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0

Остается лишь найти корни квадратных трехчленов.

Решить уравнение четвертой степени 4 x 4 + 1 = 0 .

Решение

Для начала проведем разложение многочлена 4 x 4 + 1 на множители:

4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = ( 2 x 2 + 1 ) 2 - 4 x 2 = 2 x 2 - 2 x + 1 ( 2 x 2 + 2 x + 1 )

Теперь найдем корни квадратных трехчленов.

2 x 2 - 2 x + 1 = 0 D = ( - 2 ) 2 - 4 · 2 · 1 = - 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 - D 2 · 2 = 1 2 - i

2 x 2 + 2 x + 1 = 0 D = 2 2 - 4 · 2 · 1 = - 4 x 3 = - 2 + D 2 · 2 = - 1 2 + i x 4 = - 2 - D 2 · 2 = - 1 2 - i

Мы получили четыре комплексных корня.

Ответ: x = 1 2 ± i и x = - 1 2 ± i .

Решение уравнений высших степеней

В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

Понятие равносильных уравнений

Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.

Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.

Уравнение f ( x ) = g ( x ) считается равносильным уравнению r ( x ) = s ( x ) , если у них одинаковые корни или у них обоих нет корней.

Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.

Если уравнение f ( x ) = g ( x ) имеет то же множество корней, что и уравнение p ( x ) = h ( x ) , то они считаются равносильными по отношению друг к другу.

Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.

Приведем несколько примеров таких уравнений.

Например, равносильными будут 4 · x = 8 , 2 · x = 4 и x = 2 , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x · 0 = 0 и 2 + x = x + 2 , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x = x + 5 и x 4 = − 1 , каждое из которых не имеет ни одного решения.

Для наглядности рассмотрим несколько примеров неравносильных уравнений.

К примеру, таковыми будут x = 2 и x 2 = 4 , поскольку их корни отличаются. То же относится и к уравнениям x x = 1 и x 2 + 5 x 2 + 5 , потому что во втором решением может быть любое число, а во втором корнем не может быть 0 .

Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.

Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x 2 + y 2 + z 2 = 0 и 5 · x 2 + x 2 · y 4 · z 8 = 0 включают в себя по три переменных и имеют только одно решение, равное 0 , во всех трех случаях. А пара уравнений x + y = 5 и x · y = 1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.

Уравнения высшей степени с целыми коэффициентами

Все уравнения, имеющие вид a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n - 1 и осуществив замену переменной вида y = a n x :

a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n - 1 · a n n - 1 · x n - 1 + … + a 1 · ( a n ) n - 1 · x + a 0 · ( a n ) n - 1 = 0 y = a n x ⇒ y n + b n - 1 y n - 1 + … + b 1 y + b 0 = 0

Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n - 1 + … + a 1 x + a 0 = 0 .

Уравнение 4 степени

Уравнение четвертой степени при Биквадратное уравнение: при Замена переменной приводит биквадратное уравнение к квадратному Корни биквадратного уравнения: где — дискриминант.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Уравнение 4 степени

Пример:

Решение методом Лагранжа уравнений четвертой степени

Попытаемся обобщить метод предыдущего параграфа на случай 4-й степени. Рассмотрим выражение где — корень 4-й степени из — корни уравнения то есть Сколько значений принимает выражение при различных перестановках корней? Очевидно, 24 значения — столько же, сколько всех возможных перестановок.

Уравнение 4 степени

Однако заметим, что некоторые перестановки дают выражения, пропорциональные , причем коэффициенты пропорциональности являются корнями четвертой степени из 1.

Это происходит при циклической перестановке и, следовательно, еще при двух перестановках, являющихся ее степенями, а именно при перестановках (перестановка уже является тождественной). Можно это проверить и непосредственно, например, заметив, что перестановка меняет местами переменные и а также переменные и и выражение при этом меняет знак на противоположный.

Возможно вам будут полезны данные страницы:

Уравнение 4 степени

Заметим, что при этих перестановках выражение вообще не меняется.

Упражнение 107. Проверьте, что любая другая перестановка не обладает этим свойством.

Уравнение 4 степени

Упражнение 108. Проверьте, что при всех 24 перестановках выражение принимает ровно 24/4 = 6 значений:

Уравнение 4 степени

Эти значения являются корнями уравнения шестой степени, коэффициенты которого полиномиально выражаются через коэффициенты исходного уравнения. Получившееся уравнение шестой степени можно разложить на два кубических. Однако этот способ требует слишком много вычислений.

Уравнение 4 степени

Попытаемся найти более удобные выражения, чем Для этого рассмотрим подробнее метод разложения на два множителя, примененный Феррари.

Уравнение 4 степени

Его идея состоит в том, чтобы представить левую часть уравнения в виде разности двух квадратов. Тогда ее можно будет разложить на два множителя второй степени, и решение уравнения приведется к решению двух квадратных уравнений.

Для этого левую часть представим в виде

Уравнение 4 степени

Уравнение 4 степени

где — вспомогательная неизвестная, которую подберем так, чтобы выражение в квадратных скобках оказалось квадратом линейного двучлена. Для этого необходимо и достаточно выполнения условия

Уравнение 4 степени

Уравнение 4 степени

Это условие есть кубическое уравнение относительно . Оно называется резольвентой Феррари.

После раскрытия скобок уравнение преобразуется к виду

Уравнение 4 степени

Пусть — один из корней этого уравнения. Тогда при условие будет выполнено, так что имеет место

Уравнение 4 степени

при некоторых и Исходное уравнение примет вид

Уравнение 4 степени

Уравнение 4 степени

Приравняв к нулю каждый из сомножителей, находим четыре корня исходного уравнения.

Пусть и — корни первого сомножителя, и — корни второго. Тогда Сложив эти равенства, получим, что Таким образом, мы получим выражение корня вспомогательного кубического уравнения через корни исходного уравнения четвертой степени.

Другими корнями кубического уравнения будут Таким образом, мы нашли такое выражение от корней что при их всевозможных перестановках получается только два новых выражения. Поэтому эти выражения являются корнями уравнения третьей степени, коэффициенты которого полиномиально выражаются через коэффициенты исходного уравнения четвертой степени.

Данный результат можно было получить и двигаясь от этих выражений к уравнению третьей степени.

Действительно, согласно теореме Виета для уравнения Аналогично

Уравнение 4 степени

Уравнение 4 степени

Уравнение 4 степени

Пример с решением

Рассмотрим еще один метод решения уравнения 4-й степени Возьмем другое выражение от корней которое тоже принимает при переставлении корней всего 3 значения: Найдем кубическое уравнение с корнями Другими словами, выразим его коэффициенты через коэффициенты Используя теорему Виета, имеем Найдя из этого уравнения можно определить и корни Для этого используем равенство из которого следует, что

Уравнение 4 степени

Уравнение 4 степени

Отсюда можно выразить

Решение методом Эйлера уравнений четвертой степени

Существуют и другие способы решения уравнения четвертой степени. Один из наиболее изящных принадлежит Эйлеру. Этот способ состоит в следующем. Полное уравнение четвертой степени (5) подстановкой приводится к более простому виду: (6) Полагаем: (7) В равенство (7) введено три неизвестных. Чтобы определить их, нужно будет дать три уравнения. Возводя обе части равенства (7) два раза в квадрат, получаем: (8)

Подставляя в уравнение (6) вместо их выражения из равенств (7) и (8), после упрощения получим: (9)

Для того чтобы выполнялось равенство где — корень уравнения (6), необходимо и достаточно выполнение уравнения (9).

Оно содержит три неизвестных. Чтобы определить их, нужны еще два уравнения, которые можно выбрать произвольно. Свободой выбора следует воспользоваться для наибольшего упрощения уравнения.

Руководствуясь этим, положим (10) При этом выборе величин и уравнение (9) обращается в уравнение (11) Из (10) и (11) заключаем, что и удовлетворяют системе уравнений (12) Отсюда следует, что числа и являются корнями уравнения: (13) Оно совпадает с резольвентой Феррари, полученной ранее. Пусть —корни резольвенты. Положим Извлекая корни, имеем (14) При этом, в силу равенства (10), выполняется равенство (15)

Уравнение 4 степени

У двух радикалов в равенствах (14) можно взять любое из их значений. После этого значение третьего радикала следует взять определенное — оно находится из равенства (15). Подставляя полученные выражения для в уравнение (7), приходим к следующей теореме.

Теорема 100 (Эйлер). Корни приведенного уравнения четвертой степени выражаются через корни резольвенты Феррари

по формулам: При этом значения радикалов и должны быть выбраны так, чтобы выполнялось равенство:

Уравнение 4 степени

Уравнение 4 степени

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Понятие уравнений-следствий

Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.

Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.

Решение уравнений четвертой степени с рациональными корнями

Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».

Читайте также: