Dram timing control что это

Обновлено: 12.05.2024

Как разогнать процессор Intel на примере Intel Core i9-9900K

Разгон процессоров от компании Intel в первую очередь связан с выбором процессора с индексом K или KF (К — означает разблокированный множитель) и материнской платы на Z-чипсете (Z490–170). А также от выбора системы охлаждения.

Чтобы понять весь смыл разгона, нужно определиться, что вы хотите получить от разгона. Стабильной работы и быть уверенным, что не вылезет синий экран смерти? Или же вам нужно перед друзьями пощеголять заветной частотой 5000–5500 MHz?

Сегодня будет рассмотрен именно первый вариант. Стабильный разгон на все случаи жизни, однако и тем, кто выбрал второй вариант, будет полезно к прочтению.

Вторичные

Второстепенные тайминги не так сильно влияют на производительность, за исключением пары штук. Однако, их неправильная настройка может влиять на стабильность памяти.

Write Recovery (tWR) — время, необходимое для окончания записи данных и подачи команды на перезарядку строки.

Refresh Cycle (tRFC) — период времени, когда банки памяти активно перезаряжаются после работы. Чем ниже тайминг, тем быстрее память перезарядится.

Row Activation to Row Activation delay (tRRD) — время между активацией разных строк банков в пределах одного чипа памяти.

Write to Read delay (tWTR) — минимальное время для перехода от чтения к записи.

Read to Precharge (tRTP) — минимальное время между чтением данных и перезарядкой.

Four bank Activation Window (tFAW) — минимальное время между первой и пятой командой на активацию строки, выполненных подряд.

Write Latency (tCWL) — время между командой на запись и самой записью.

Refresh Interval (tREFI) — чтобы банки памяти работали без ошибок, их необходимо перезаряжать после каждого обращения. Но, можно заставить их работать дольше без отдыха, а перезарядку отложить на потом. Этот тайминг определяет количество времени, которое банки памяти могут работать без перезарядки. За ним следует tRFC — время, которое необходимо памяти, чтобы зарядиться.

Выбор материнской платы

К разгону нужно подходить очень ответственно и не пытаться разогнать Core i9-9900K на материнских платах, которые не рассчитаны на данный процессор (это, к примеру, ASRock Z390 Phantom Gaming 4, Gigabyte Z390 UD, Asus Prime Z390-P, MSI Z390-A Pro и так далее), так как удел этих материнских плат — процессоры Core i5 и, возможно, Core i7 в умеренном разгоне. Intel Core i9-9900K в результате разгона и при серьезной постоянной нагрузке потребляет от 220 до 300 Ватт, что неминуемо вызовет перегрев цепей питания материнских плат начального уровня и, как следствие, выключение компьютера, либо сброс частоты процессора. И хорошо, если просто к перегреву, а не прогару элементов цепей питания.

Выбор материнской платы для разгона — это одно из самых важных занятий. Ведь именно функционал платы ее настройки и качество элементной базы и отвечают за стабильность и успех в разгоне. Ознакомиться со списком пригодных материнских плат можно по ссылке.

Все материнские платы разделены на 4 группы: от начального уровня до продукта для энтузиастов. По большому счету, материнские платы второй и, с большой натяжкой, третьей группы хорошо справятся с разгоном процессора i9-9900K.

Схематика чипов

Микросхемы памяти можно представить в виде поля для игры в морской бой или так:


В самом упрощенном виде иерархия чипа это: Rank — Bank — Row — Column. В ранках (рангах) хранятся банки. Банки состоят из строк (row) и столбцов (column). Чтобы найти информацию, контроллеру необходимо иметь координаты точки на пересечении строк и столбцов. По запросу, он активирует нужные строки и находит информацию. Скорость такой работы зависит от таймингов.

Силиконовая лотерея

И третий элемент, который участвует в разгоне — это сам процессор. Разгон является лотереей, и нельзя со 100% уверенностью сказать, что любой процессор с индексом К получится разогнать до частоты 5000 MHz, не говоря уже о 5300–5500 MHz (имеется в виду именно стабильный разгон). Оценить шансы на выигрыш в лотерее можно, пройдя по ссылке, где собрана статистика по разгону различных процессоров.


Тайминги плюс частота — скорость

Соответственно, частота и тайминги связаны между собой и задают общую скорость работы оперативной памяти. Чтобы не путаться в сложных формулах, представим работу тандема частота/тайминги в виде графического примера:


Разберем схему. На торговом центре есть два отдела с техникой. Один продает видеокарты, другой — игровые приставки. Дефицит игровой техники довел клиентов до сумасшествия, и они готовы купить видеокарту или приставку, только чтобы поиграть в новый Assassin’s Creed. Условия торговли такие: зона ожидания в отделе первого продавца позволяет обслуживать только одного клиента за раз, а второй может разместить сразу двух. Но у первого склад с видеокартами находится в два раза ближе, чем у второго с приставками. Поэтому он приносит товар быстрее, чем второй. Однако, второй продавец будет обслуживать сразу двух клиентов, хотя ему и придется ходить за товаром в два раза дальше. В таком случае, скорость работы обоих будет одинакова. А теперь представим, что склад с приставками находится на том же расстоянии, что и у первого с видеокартами. Теперь продавец консолей начнет работать в два раза быстрее первого и заберет себе большую часть прибыли. И, чем ближе склад и больше клиентов в отделе, тем быстрее он зарабатывает деньги.

Так, мы понимаем, как взаимодействует частота с таймингами в скорости работы памяти.

  • Очередь — это пользователь, который запрашивает информацию из оперативной памяти.
  • Продавец — это контроллер памяти (который доставляет информацию).
  • Техника со склада — это информация для пользователя. Прилавок — это пропускная способность памяти в герцах (частота).
  • Расстояние до склада — тайминги (время, за которое контроллер найдет информацию по запросу).

Соответственно, чем меньше метров проходит контроллер до банок с электрическим зарядом, тем быстрее пользователь получает информацию. Если частота памяти позволяет доставить больше информации при том же расстоянии, то скорость памяти возрастает. Если частота памяти тянет за собой увеличение расстояния до банок (высокие тайминги), то общая скорость работы памяти упадет.

Сравнить скорость разных модулей ОЗУ в наносекундах можно с помощью формулы: тайминг*2000/частоту памяти. Так, ОЗУ с частотой 3600 и таймингами CL14 будет работать со скоростью 14*2000/3600 = 7,8 нс. А 4000 на CL16 покажет ровно 8 нс. Выходит, что оба варианта примерно одинаковы по скорости, но второй предпочтительнее из-за большей пропускной способности. В то же время, если взять память с частотой 4000 при CL14, то это будет уже 7 нс. При этом пропускная способность станет еще выше, а время доставки информации снизится на 1 нс.

Оперативная память и ее скорость

Оперативная память состоит из тысяч элементов, связанных между собой в чипах-микросхемах. Их называют банками (bank), которые хранят в себе строчки и столбцы с электрическим зарядом. Сам электрический заряд — это информация (картинки, программы, текст в буфере обмена и много чего еще). Как только системе понадобились данные, банка отдает заряд и ждет команды на заполнение новыми данными. Этим процессом руководит контроллер памяти.

Для аналогии, сравним работу оперативной памяти и работу кафе. Чипы можно представить в виде графинов с томатным соком. Каждый наполнен соком и мякотью спелых помидоров (электрический заряд, информация). В кафе приходит клиент (пользователь компьютера) и заказывает сок (запускает игру). Бармен (контроллер, тот, кто управляет банками) принимает заказ, идет на кухню (запрашивает информацию у банок), наливает сок (забирает игровые файлы) и несет гостю, а затем возвращается и заполняет графин новым соком (новой информацией о том, что запустил пользователь). Так до бесконечности.


Выбор системы охлаждения

Немаловажным фактором успешного разгона является выбор системы охлаждения. Как я уже говорил, если вы будете разгонять на кулере который для этого не предназначен, у вас ничего хорошего не получится. Нам нужна либо качественная башня, способная реально отводить 220–250 TDP, либо жидкостная система охлаждения подобного уровня. Здесь все зависит только от бюджета.

Из воздушных систем охлаждения обратить внимание стоит на Noctua NH-D15 и be quiet! DARK ROCK PRO 4.

Надежный (неэкстремальный) разгон процессора и памяти для материнских плат ASUS с процессором i7

Все действия, связанные с разгоном, осуществляются в меню AI Tweaker (UEFI Advanced Mode) установкой параметра AI Overclock Tuner в Manual (рис. 1).



Рис. 1

BCLK/PEG Frequency

Параметр BCLK/PEG Frequency (далее BCLK) на рис. 1 становится доступным, если выбраны Ai Overclock Tuner\XMP или Ai Overclock Tuner\Manual. Частота BCLK, равная 100 МГц, является базовой. Главный параметр разгона – частота ядра процессора, получается путем умножения этой частоты на параметр – множитель процессора. Конечная частота отображается в верхней левой части окна Ai Tweaker (на рис. 1 она равна 4,1 ГГц). Частота BCLK также регулирует частоту работы памяти, скорость шин и т.п.
Возможное увеличение этого параметра при разгоне невелико – большинство процессоров позволяют увеличивать эту частоту только до 105 МГц. Хотя есть отдельные образцы процессоров и материнских плат, для которых эта величина равна 107 МГц и более. При осторожном разгоне, с учетом того, что в будущем в компьютер будут устанавливаться дополнительные устройства, этот параметр рекомендуется оставить равным 100 МГц (рис. 1).

ASUS MultiCore Enhancement

Когда этот параметр включен (Enabled на рис. 1), то принимается политика ASUS для Turbo-режима. Если параметр выключен, то будет применяться политика Intel для Turbo-режима. Для всех конфигураций при разгоне рекомендуется включить этот параметр (Enabled). Выключение параметра может быть использовано, если вы хотите запустить процессор с использованием политики корпорации Intel, без разгона.

Turbo Ratio

В окне рис. 1 устанавливаем для этого параметра режим Manual. Переходя к меню Advanced\. \CPU Power Management Configuration (рис. 2) устанавливаем множитель 41.



Рис. 2
Возвращаемся к меню AI Tweaker и проверяем значение множителя (рис. 1).
Для очень осторожных пользователей можно порекомендовать начальное значение множителя, равное 40 или даже 39. Максимальное значение множителя для неэкстремального разгона обычно меньше 45.

Internal PLL Overvoltage

Увеличение (разгон) рабочего напряжения для внутренней фазовой автоматической подстройки частоты (ФАПЧ) позволяет повысить рабочую частоту ядра процессора. Выбор Auto будет автоматически включать этот параметр только при увеличении множителя ядра процессора сверх определенного порога.
Для хороших образцов процессоров этот параметр нужно оставить на Auto (рис. 1) при разгоне до множителя 45 (до частоты работы процессора 4,5 ГГц).
Отметим, что стабильность выхода из режима сна может быть затронута, при установке этого параметра в состояние включено (Enabled). Если обнаруживается, что ваш процессор не будет разгоняться до 4,5 ГГц без установки этого параметра в состояние Enabled, но при этом система не в состоянии выходить из режима сна, то единственный выбор – работа на более низкой частоте с множителем меньше 45. При экстремальном разгоне с множителями, равными или превышающими 45, рекомендуется установить Enabled. При осторожном разгоне выбираем Auto. (рис. 1).

CPU bus speed: DRAM speed ratio mode

Этот параметр можно оставить в состоянии Auto (рис. 1), чтобы применять в дальнейшем изменения при разгоне и настройке частоты памяти.

Memory Frequency

Этот параметр виден на рис. 3. С его помощью осуществляется выбор частоты работы памяти.



Рис. 3
Параметр Memory Frequency определяется частотой BCLK и параметром CPU bus speed:DRAM speed ratio mode. Частота памяти отображается и выбирается в выпадающем списке. Установленное значение можно проконтролировать в левом верхнем углу меню Ai Tweaker. Например, на рис. 1 видим, что частота работы памяти равна 1600 МГц.
Отметим, что процессоры Ivy Bridge имеют более широкий диапазон настроек частот памяти, чем предыдущее поколение процессоров Sandy Bridge. При разгоне памяти совместно с увеличением частоты BCLK можно осуществить более детальный контроль частоты шины памяти и получить максимально возможные (но возможно ненадежные) результаты при экстремальном разгоне.
Для надежного использования разгона рекомендуется поднимать частоту наборов памяти не более чем на 1 шаг относительно паспортной. Более высокая скорость работы памяти дает незначительный прирост производительности в большинстве программ. Кроме того, устойчивость системы при более высоких рабочих частотах памяти часто не может быть гарантирована для отдельных программ с интенсивным использованием процессора, а также при переходе в режим сна и обратно.
Рекомендуется также сделать выбор в пользу комплектов памяти, которые находятся в списке рекомендованных для выбранного процессора, если вы не хотите тратить время на настройку стабильной работы системы.
Рабочие частоты между 2400 МГц и 2600 МГц, по-видимому, являются оптимальными в сочетании с интенсивным охлаждением, как процессоров, так и модулей памяти. Более высокие скорости возможны также за счет уменьшения вторичных параметров – таймингов памяти.
При осторожном разгоне начинаем с разгона только процессора. Поэтому вначале рекомендуется установить паспортное значение частоты работы памяти, например, для комплекта планок памяти DDR3-1600 МГц устанавливаем 1600 МГц (рис. 3).
После разгона процессора можно попытаться поднять частоту памяти на 1 шаг. Если в стресс-тестах появятся ошибки, то можно увеличить тайминги, напряжение питания (например на 0,05 В), VCCSA на 0,05 В, но лучше вернуться к номинальной частоте.

EPU Power Saving Mode

Автоматическая система EPU разработана фирмой ASUS. Она регулирует частоту и напряжение элементов компьютера в целях экономии электроэнергии. Эта установка может быть включена только на паспортной рабочей частоте процессора. Для разгона этот параметр выключаем (Disabled) (рис. 3).

OC Tuner

Когда выбрано (OK), будет работать серия стресс-тестов во время Boot-процесса с целью автоматического разгона системы. Окончательный разгон будет меняться в зависимости от температуры системы и используемого комплекта памяти. Включать не рекомендуется, даже если вы не хотите вручную разогнать систему. Не трогаем этот пункт или выбираем cancel (рис. 3).

DRAM Timing Control

DRAM Timing Control – это установка таймингов памяти (рис. 4).



Рис. 4.
Все эти настройки нужно оставить равными паспортным значениям и на Auto, если вы хотите настроить систему для надежной работы. Основные тайминги должны быть установлены в соответствии с SPD модулей памяти.



Рис. 5
Большинство параметров на рис. 5 также оставляем в Auto.

MRC Fast Boot

Включите этот параметр (Enabled). При этом пропускается тестирование памяти во время процедуры перезагрузки системы. Время загрузки при этом уменьшается.
Отметим, что при использовании большего количества планок памяти и при высокой частоте модулей (2133 МГц и выше) отключение этой настройки может увеличить стабильность системы во время проведения разгона. Как только получим желаемую стабильность при разгоне, включаем этот параметр (рис. 5).

DRAM CLK Period

Определяет задержку контроллера памяти в сочетании с приложенной частоты памяти. Установка 5 дает лучшую общую производительность, хотя стабильность может ухудшиться. Установите лучше Auto (рис. 5).

CPU Power Management

Окно этого пункта меню приведено на рис. 6. Здесь проверяем множитель процессора (41 на рис. 6), обязательно включаем (Enabled) параметр энергосбережения EIST, а также устанавливаем при необходимости пороговые мощности процессоров (все последние упомянутые параметры установлены в Auto (рис. 6)).
Перейдя к пункту меню Advanced\. \CPU Power Management Configuration (рис. 2) устанавливаем параметр CPU C1E (энергосбережение) в Enabled, а остальные (включая параметры с C3, C6) в Auto.



Рис. 6



Рис. 7.

DIGI+ Power Control

На рис. 7 показаны рекомендуемые значения параметров. Некоторые параметры рассмотрим отдельно.

CPU Load-Line Calibration

Сокращённое наименование этого параметра – LLC. При быстром переходе процессора в интенсивный режим работы с увеличенной мощностью потребления напряжение на нем скачкообразно уменьшается относительно стационарного состояния. Увеличенные значения LLC обуславливают увеличение напряжения питания процессора и уменьшают просадки напряжения питания процессора при скачкообразном росте потребляемой мощности. Установка параметра равным high (50%) считается оптимальным для режима 24/7, обеспечивая оптимальный баланс между ростом напряжения и просадкой напряжения питания. Некоторые пользователи предпочитают использовать более высокие значения LLC, хотя это будет воздействовать на просадку в меньшей степени. Устанавливаем high (рис. 7).

VRM Spread Spectrum

При включении этого параметра (рис. 7) включается расширенная модуляция сигналов VRM, чтобы уменьшить пик в спектре излучаемого шума и наводки в близлежащих цепях. Включение этого параметра следует использовать только на паспортных частотах, так как модуляция сигналов может ухудшить переходную характеристику блока питания и вызвать нестабильность напряжения питания. Устанавливаем Disabled (рис. 7).

Current Capability

Значение 100% на все эти параметры должны быть достаточно для разгона процессоров с использованием обычных методов охлаждения (рис. 7).



Рис. 8.

CPU Voltage

Есть два способа контролировать напряжения ядра процессора: Offset Mode (рис. 8) и Manual. Ручной режим обеспечивает всегда неизменяемый статический уровень напряжения на процессоре. Такой режим можно использовать кратковременно, при тестировании процессора. Режим Offset Mode позволяет процессору регулировать напряжение в зависимости от нагрузки и рабочей частоты. Режим Offset Mode предпочтителен для 24/7 систем, так как позволяет процессору снизить напряжение питания во время простоя компьютера, снижая потребляемую энергию и нагрев ядер.
Уровень напряжения питания будет увеличиваться при увеличении коэффициента умножения (множителя) для процессора. Поэтому лучше всего начать с низкого коэффициента умножения, равного 41х (или 39х) и подъема его на один шаг с проверкой на устойчивость при каждом подъеме.
Установите Offset Mode Sign в “+”, а CPU Offset Voltage в Auto. Загрузите процессор вычислениями с помощью программы LinX и проверьте с помощью CPU-Z напряжение процессора. Если уровень напряжения очень высок, то вы можете уменьшить напряжение путем применения отрицательного смещения в UEFI. Например, если наше полное напряжение питания при множителе 41х оказалась равным 1,35 В, то мы могли бы снизить его до 1,30 В, применяя отрицательное смещение с величиной 0,05 В.
Имейте в виду, что уменьшение примерно на 0,05 В будет использоваться также для напряжения холостого хода (с малой нагрузкой). Например, если с настройками по умолчанию напряжение холостого хода процессора (при множителе, равном 16x) является 1,05 В, то вычитая 0,05 В получим примерно 1,0 В напряжения холостого хода. Поэтому, если уменьшать напряжение, используя слишком большие значения CPU Offset Voltage, наступит момент, когда напряжение холостого хода будет таким малым, что приведет к сбоям в работе компьютера.
Если для надежности нужно добавить напряжение при полной нагрузке процессора, то используем “+” смещение и увеличение уровня напряжения. Отметим, что введенные как “+” так и “-” смещения не точно отрабатываются системой питания процессора. Шкалы соответствия нелинейные. Это одна из особенностей VID, заключающаяся в том, что она позволяет процессору просить разное напряжение в зависимости от рабочей частоты, тока и температуры. Например, при положительном CPU Offset Voltage 0,05 напряжение 1,35 В при нагрузке может увеличиваться только до 1,375 В.
Из изложенного следует, что для неэкстремального разгона для множителей, примерно равных 41, лучше всего установить Offset Mode Sign в “+” и оставить параметр CPU Offset Voltage в Auto. Для процессоров Ivy Bridge, ожидается, что большинство образцов смогут работать на частотах 4,1 ГГц с воздушным охлаждением.
Больший разгон возможен, хотя при полной загрузке процессора это приведет к повышению температуры процессора. Для контроля температуры запустите программу RealTemp.

DRAM Voltage

Устанавливаем напряжение на модулях памяти в соответствии с паспортными данными. Обычно это примерно 1,5 В. По умолчанию – Auto (рис. 8).

VCCSA Voltage

Параметр устанавливает напряжение для System Agent. Можно оставить на Auto для нашего разгона (рис. 8).

CPU PLL Voltage

Для нашего разгона – Auto (рис. 8). Обычные значения параметра находятся около 1,8 В. При увеличении этого напряжения можно увеличивать множитель процессора и увеличивать частоту работы памяти выше 2200 МГц, т.к. небольшое превышение напряжения относительно номинального может помочь стабильности системы.

PCH Voltage

Можно оставить значения по умолчанию (Auto) для небольшого разгона (рис. 8). На сегодняшний день не выявилось существенной связи между этим напряжением на чипе и другими напряжениями материнской платы.



Рис. 9

CPU Spread Spectrum

При включении опции (Enabled) осуществляется модуляция частоты ядра процессора, чтобы уменьшить величину пика в спектре излучаемого шума. Рекомендуется установить параметр в Disabled (рис. 9), т.к. при разгоне модуляция частоты может ухудшить стабильность системы.

Автору таким образом удалось установить множитель 41, что позволило ускорить моделирование с помощью MatLab.

Частота — количество

Теперь, что касается частоты памяти. В работе ОЗУ частота влияет не на время, а на количество информации, которую контроллер может утащить за один подход. Например, в кафе снова приходит клиент и требует томатный сок, а еще виски со льдом и молочный коктейль. Бармен может принести сначала один напиток, потом второй, третий. Клиент ждать не хочет. Тогда бармену придется нести все сразу за один подход. Если у него нет проблем с координацией, он поставит все три напитка на поднос и выполнит требование капризного клиента.


Аналогично работает частота памяти: увеличивает ширину канала для данных и позволяет принимать или отдавать больший объем информации за один подход.

Приступаем к разгону

Примером в процессе разгона будет выступать материнская плата ASUS ROG MAXIMUS XI HERO и процессор Intel Core i9-9900K. За охлаждение процессора отвечает топовый воздушный кулер Noctua NH-D15.

Первым делом нам потребуется обновить BIOS материнской платы. Сделать это можно как напрямую, из специального раздела BIOS с подгрузкой из интернета, так и через USB-накопитель, предварительно скачав последнюю версию c сайта производителя. Это необходимо, потому как в новых версиях BIOS уменьшается количество багов. BIOS, что прошит в материнской плате при покупке, скорее всего, имеет одну из самых ранних версий.

Тактовая частота процессора формируется из частоты шины BCLK и коэффициента множителя Core Ratio.


Как уже было сказано, разгон будет осуществляться изменением множителя процессора.

Заходим в BIOS и выбираем вкладку Extreme Tweaker. Именно тут и будет происходить вся магия разгона.


Первым делом меняем значение параметра Ai Overclocker Tuner с Auto в Manual. У нас сразу становятся доступны вкладки, отвечающие за частоту шины BCLK Frequency и CPU Core Ratio, отвечающая за возможность настройки множителя процессора.

ASUS MultiCore Enhancement какой-либо роли, когда Ai Overclocker Tuner в режиме Manual, не играет, можно либо не трогать, либо выключить, чтобы глаза не мозолило. Одна из уникальных функций Asus, расширяет лимиты TDP от Intel.

SVID Behavior — обеспечивает взаимосвязь между процессором и контроллером напряжения материнской платы, данный параметр используется при выставлении адаптивного напряжения или при смещении напряжения (Offset voltages). Начать разгон в любом случае лучше с фиксированного напряжения, чтобы понять, что может конкретно ваш экземпляр процессора, ведь все они уникальны. Если используется фиксация напряжения, значение этого параметра просто игнорируется. Установить Best Case Scenario. Но к этому мы еще вернемся чуть позже.

AVX Instruction Core Ratio Negative Offset — устанавливает отрицательный коэффициент при выполнении AVX-инструкций. Программы, использующие AVX-инструкции, создают сильную нагрузку на процессор, и, чтобы не лишаться заветных мегагерц в более простых задачах, придумана эта настройка. Несмотря на все большее распространение AVX-инструкции, в программах и играх они встречаются все еще редко. Все сугубо индивидуально и зависит от задач пользователя. Я использую значение 1.

Наример, если нужно, чтобы частота процессора при исполнении AVX инструкций была не 5100 MHz, а 5000 MHz, нужно указать 1 (51-1=50).

Далее нас интересует пункт CPU Core Ratio. Для процессоров с индексом K/KF выбираем Sync All Cores (для всех ядер).

1-Core Ratio Limit — именно тут и задается множитель для ядер процессора. Начать лучше с 49–50 для 9 серии и 47–48 для 8 серии процессоров Intel соответственно, с учетом шины BCLK 100 мы как раз получаем 4900–5000 MHz и 4700–4800 MHz.


DRAM Frequency — отвечает за установку частоты оперативной памяти. Но это уже совсем другая история.

CPU SVID Support — данный параметр необходим процессору для взаимодействия с регулятором напряжения материнской платы. Блок управления питанием внутри процессора использует SVID для связи с ШИМ-контроллером, который управляет регулятором напряжения. Это позволяет процессору выбирать оптимальное напряжение в зависимости от текущих условий работы. В адаптивном режиме установить в Auto или Enabled. При отключении пропадет мониторинг значений VID и потребляемой мощности.

CPU Core/Cache Current Limit Max — лимит по току в амперах (A) для процессорных ядер и кэша. Выставляем 210–220 A. Этого должно хватить всем даже для 9900к на частоте 5100MHz. Максимальное значение 255.75.

Min/Max CPU Cache Ratio — множитель кольцевой шины или просто частота кэша. Для установки данного параметра есть неофициальное правило, множитель кольцевой шины примерно на два–три пункта меньше, чем множитель для ядер.

Например, если множитель для ядер 51, то искать стабильность кэша нужно от 47. Все очень индивидуально. Начать лучше с разгона только ядер. Если ядро стабильно, можно постепенно повышать частоту кэша на 1 пункт.

Разгон кольцевой шины в значении 1 к 1 с частотой ядер это идеальный вариант, но встречается такое очень редко на частоте 5000 MHz.

Заходим в раздел Internal CPU Power Management для установки лимитов по энергопотреблению.


SpeedStep — во время разгона, выключаем. На мой взгляд, совершенно бесполезная функция в десктопных компьютерах.

Long Duration Packet Power Limit — задает максимальное энергопотребление процессора в ватах (W) во время долгосрочных нагрузок. Выставляем максимум — 4095/6 в зависимости от версии Bios и производителя.

Short Duration Package Power Limit — задает максимальное возможное энергопотребление процессором в ваттах (W) при очень кратковременных нагрузках. Устанавливаем максимум — 4095/6.

Package Power Time Window — максимальное время, в котором процессору разрешено выходить за установленные лимиты. Устанавливаем максимальное значение 127.

Установка максимальных значений у данных параметров отключает все лимиты.

IA AC Load Line/IA DC Load Line — данные параметры используются в адаптивном режиме установки напряжения, они задают точность работы по VID. Установка этих двух значений на 0,01 приведет ближе к тому напряжению, которое установил пользователь, при этом минимизируются пики. Если компьютер, после установки параметра IA DC Load line в значение 0,01, уходит в «синьку», рекомендуется повысить значение до 0,25. Фиксированное напряжение будет игнорировать значения VID процессора, так что установка IA AC Load Line/IA DC Load Line в значение 0,01 не будет иметь никакого влияния на установку ручного напряжения, только при работе с VID. На материских платах от Gigabyte эти параметры необходимо устанавливать в значение 1.

Возвращаемся в меню Extrime Tweaker для выставления напряжения.


BCLK Aware Adaptive Voltage — если разгоняете с изменением значения шины BCLK, — включить.

CPU Core/Cache Voltage (VCore) — отвечает за установку напряжения для ядер и кэша. В зависимости от того, какой режим установки напряжения вы выберете, дальнейшие настройки могут отличаться.

Существует три варианта установки напряжения: адаптивный, фиксированный и смещение. На эту тему много мнений, однако, в моем случае, адаптивный режим получается холоднее. Зачастую для 9 поколения процессоров Intel оптимальным напряжением для использования 24/7 является 1.350–1.375V. Подобное напряжение имеет место выставлять для 9900К при наличии эффективного охлаждения.

Поднимать напряжение выше 1.4V для 8–9 серии процессоров Intel совершенно нецелесообразно и опасно. Рост потребления и температуры не соразмерен с ростом производительности, которую вы получите в результате такого разгона.

  • Для тех кто выбрал фиксированный режим — установить Manual Mode. Напряжение подбирается индивидуально.
  • Для тех, кто выбрал адаптивный режим — установки напряжения Adaptive mode.

Offset mode Sign — устанавливает, в какую сторону будет происходить смещение напряжения, позволяет добавлять (+) или уменьшать (-) значения к выставленному вольтажу.

Additional Turbo Mode CPU Core Voltage — устанавливает максимальное напряжение для процессора в адаптивном режиме. Я использую 1.350V, данное напряжение является некой золотой серединой по соотношению температура/безопасность.

Offset Voltage — величина смещения напряжения. У меня используется 0.001V, все очень индивидуально и подбирается во время тестирования.

Для тех кто выбрал установку напряжения смещением, установить Offset Mode и выбрать сторону смещения -/+ и указать величину.

DRAM Voltage — устанавливает напряжение для оперативной памяти. Условно безопасное значение при наличии радиаторов на оперативной памяти составляет 1.4–1.45V, без радиаторов до 1.4V.

CPU VCCIO Voltage (VCCIO) — устанавливает напряжение на IMC и IO.

CPU System Agent Voltage (VCCSA) — напряжение кольцевой шины и контроллера кольцевой шины.

Таблица с соотношением частоты оперативной памяти и напряжениями VCCIO и VCCSA:


Однако, по личному опыту, даже для частоты 4000 MHz требуется напряжение примерно 1.15V для VCCIO и 1.2V для VCCSA. На мой взгляд, разумным пределом является для VCCIO 1.20V и VCCSA 1.25V. Все что выше, должно быть оправдано либо частотой разгона оперативной памяти за 4000MHz +, либо желанием получить максимум на свой страх и риск.

Часто при использовании XMP профиля оперативной памяти параметры VCCIO и VCCSA остаются в значении Auto, тем самым могут повыситься до критических показателей, это, в свою очередь, чревато деградацией контроллера памяти с последующим выхода процессора из строя.

Поднимать данные напряжения выше 1.35V не рекомендуется в связи с риском деградации контроллера памяти и полной возможностью убить процессор. Оба эти параметра отвечают за разгон оперативной памяти.

Скорость памяти во времени

Итак, мы разобрались, что задача хорошей подсистемы памяти не только в хранении и копировании данных, но и в быстрой доставке этих данных процессору (пользователю). Будь у компьютера хоть тысяча гигабайт оперативной памяти, но с очень высокими таймингами и низкой частотой работы, по скорости получится уровень неплохого SSD-накопителя. Но это в теории. На самом деле, любая доступная память на рынке как минимум соответствует требованиям JEDEC. А это организация, которая знает, как должна работать память, и делает это стандартом для всех. Аналогично ГОСТу для колбасы или сгущенки.


Стандарты JEDEC демократичны и современные игровые системы редко работают на таких низких настройках. Производители оставляют запас прочности для чипов памяти, чтобы компании, которые выпускают готовые планки оперативной памяти могли немного «раздушить» железо с помощью разгона. Так, появились заводские профили разгона XMP для Intel и DOHCP для AMD. Это «официальный» разгон, который даже покрывается гарантией производителя.


Профили разгона включают в себя информацию о максимальной частоте и минимальных для нее таймингах. Так, в характеристиках часто пишут именно возможности работы памяти в XMP режимах. Например, частоте 3600 МГц и CL16. Чаще всего указывают самый первый тайминг как главный.

Чем выше частота и ниже тайминги, тем круче память и выше производительность всей системы.

Так работает оперативная память с момента ее создания и до нашего времени.

Установка LLC

LLC (Load-Line Calibration) В зависимости от степени нагрузки на процессор, напряжение проседает, это называется Vdroop. LLC компенсирует просадку напряжения (vCore) при высокой нагрузке. Но есть определенные особенности работы с LLC.

Например, мы установили фиксированное напряжение в BIOS для ядер 1.35V. После старта компьютера на рабочем столе мы видим уже не 1.35V, а 1.32V. Но, если запустим более требовательное к ресурсам процессора приложение, например Linx, напряжение может провалиться до 1.15V, и мы получим синий экран или «невязки», ошибки или выпадение ядер.

Чтобы напряжение проседало не так сильно и придумана функция LLC c разным уровнем компенсации просадки. Не стоит сразу гнаться за установкой самого высокого/сильного уровня компенсации. В этом нет никакого смысла. Это может быть даже опасно ввиду чрезвычайно завышенного напряжения (overshoot) в момент запуска и прекращения ресурсоемкой нагрузки перед и после Vdroop. Нужно оптимально подобрать выставленное напряжение с уровнем LLC. Напряжение под нагрузкой и должно проседать, но должна оставаться стабильность. Конкретно у меня в BIOS материнской платы стоит 1.35V c LLC 5. Под нагрузкой напряжение опускается до 1.19–1.21V, при этом процессор остается абсолютно стабильным под длительной и серьезной нагрузкой. Завышенное напряжение выливается в большем потреблении и, как следствие, более высоких температурах.

Чтобы наглядно изучить процесс работы LLC и то, какое влияние оказывает завышенный LLC на Overshoot'ы, предлагаю ознакомиться с работами elmora, более подробно здесь.

Идеальным вариантом, с точки зрения Overshoot'ов, является использование LLC в значении 1 (самое слабое на платах Asus), однако добиться стабильности с таким режимом работы LLC во время серьезной нагрузки будет сложно, как выход, существенное завышенное напряжение в BIOS. Что тоже не очень хорошо.


Пример использовании LLC в значении 8 (самое сильно на платах Asus)


При появлении нагрузки на процессоре напряжение просело, но потом в работу включается LLC и компенсирует просадку, причем делая это настолько агрессивно, что напряжение на мгновение стало даже выше установленного в BIOS.

В момент прекращения нагрузки мы видим еще больший скачок напряжения (Overshoot), а потом спад, работа LLC прекратилась. Вот именно эти Overshoot'ы, которые значительно превышают установленное напряжение в BIOS, опасны для процессора. Какого-либо вреда на процессор Undershoot и Vdroop не оказывают, они лишь являются виновниками нестабильности работы процессора при слишком сильных просадках.


CPU Current Capability — увеличивает допустимое значение максимального тока, подаваемого на процессор. Сильно не увлекайтесь, с увеличением растет так же и температура. Оптимально на 130–140%

VRM Spread Spectrum — лучше выключить и кактус у компьютера поставить, незначительное уменьшение излучения за счет ухудшения сигналов да и шина BLCK скакать не будет.

Все остальные настройки нужны исключительно для любителей выжимать максимум из своих систем любой ценой.

Проверка стабильности

После внесения всех изменений, если компьютер не загружается, необходимо повысить напряжение на ядре или понизить частоту. Когда все же удалось загрузить Windows, открываем программу HWinfo или HWMonitor для мониторинга за состоянием температуры процессора и запускаем Linx или любую другую программу для проверки стабильности и проверяем, стабильны ли произведенные настройки. Автор пользуется для проверки стабильности разгона процессора программами Linx с AVX и Prime95 Version 29.8 build 6.

Если вдруг выявилась нестабильность, то повышаем напряжение в пределах разумного и пробуем снова. Если стабильности не удается добиться, понижаем частоту. Все значения частоты и напряжения сугубо индивидуальны, и дать на 100 % верные и подходящие всем значения нельзя. Как уже писалось, разгон — это всегда лотерея, однако, купив более качественный продукт, шанс выиграть всегда будет несколько выше.


Что такое тайминги и как они влияют на скорость оперативной памяти

Что такое тайминги и как они влияют на скорость оперативной памяти

Выбор оперативной памяти в игровую сборку может обернуться кошмаром, если начать разбираться в тонкостях ее работы. Требования современных игровых и рабочих задач диктуют свои условия, поэтому память — теперь чуть ли не самая важная и сложная часть в сборке компьютера. Среди многочисленных моделей нужно выбрать единственный подходящий вариант и это пугает. Причем самое сложное в этом — почему память с меньшей частотой работает быстрее и показывает больше кадров в играх, чем та, у которой частота выше. Для этого нужно разобраться, в чем все-таки измеряется скорость памяти и какие параметры влияют на нее.

Мощность компьютера измеряется величиной FLOPS, которая обозначает количество вычислительных операций за секунду. По причине того, что компьютеры могут одновременно выполнять миллионы операций, к флопсам добавляют приставку «гига».

В привычной же обстановке мы можем путать мощность и частоту, поэтому считаем производительность компьютеров не гигафлопсами, а максимальной рабочей частотой. Это проще в рядовых ситуациях, когда говорящие знают тему хорошо и соотносят мощность с герцами в уме автоматически.


В то же время, такое языковое упрощение вносит коррективы в понимание практической части вопроса. Вырывая контекст из форумов, рядовой пользователь и правда думает, что мощность памяти можно выразить в герцах. Просто потому, что гонка за частотой стала трендом среди любителей и энтузиастов. Это и мешает неопытному человеку понять, почему его высокочастотный процессор может проиграть тому, у которого на несколько сотен герц меньше. Все просто — у одного два ядра и четыре потока, а у другого четыре настоящих. И это большая разница.

Тайминги — качество

Работа памяти, вопреки стереотипу, измеряется не только герцами. Быстроту памяти принято измерять в наносекундах. Все элементы памяти работают в наносекундах. Чем чаще они разряжаются и заряжаются, тем быстрее пользователь получает информацию. Время, за которое банки должны отрабатывать задачи назвали одним словом — тайминг (timing — расчет времени, сроки). Чем меньше тактов (секунд) в тайминге, тем быстрее работают банки.

Такты. Если нам необходимо забраться на вершину по лестнице со 100 ступеньками, мы совершим 100 шагов. Если нам нужно забраться на вершину быстрее, можно идти через ступеньку. Это уже в два раза быстрее. А можно через две ступеньки. Это будет в три раза быстрее. Для каждого человека есть свой предел скорости. Как и для чипов — какие-то позволяют снизить тайминги, какие-то нет.


Строение чипа памяти и тайминги

В теории, оперативная память имеет скорость в наносекундах и мегабайтах в секунду. Однако, на практике существует не один десяток таймингов, и каждый задает время на определенную работу в микросхеме.

Они делятся на первичные, вторичные и третичные. В основном, для маркетинговых целей используется группа первичных таймингов. Их можно встретить в характеристиках модулей. Например:


Вот, как выглядят тайминги на самом деле:


Их намного больше и каждый за что-то отвечает. Здесь бармен с томатным соком не поможет, но попробуем разобраться в таймингах максимально просто.

Первичные

CAS Latency (tCL) — главный тайминг в работе памяти. Указывает время между командой на чтение/запись информации и началом ее выполнения.

RAS to CAS Delay (tRCD) — время активации строки.

Row Precharge Time (tRP) — прежде чем перейти к следующей строке в этом же банке, предыдущую необходимо зарядить и закрыть. Тайминг обозначает время, за которое контроллер должен это сделать.

Row Active Time (tRAS) — минимальное время, которое дается контроллеру для работы со строкой (время, в течение которого она может быть открыта для чтения или записи), после чего она закроется.

Command Rate (CR) — время до активации новой строки.

Резюмируем все выше сказанное

Максимально допустимое напряжение на процессор составляет до 1.4V. Оптимально в пределах 1.35V, со всем что выше, возникают трудности с температурой под нагрузкой.

Существует 3 способа установки напряжения:

  • Manual mode
  • Adaptive mode
  • Offset mode

Adaptive mode — это предпочтительный способ для установки напряжения.
Он работает с таблицей значений VID вашего процессора и позволяет снижать напряжение в простое.

Оптимально найти стабильное напряжение в фиксированном режиме, потом выставить адаптивный режим и вбить это знание для адаптивного режима, далее выставить величину смещения по необходимости.

При разгоне оперативной памяти и использовании XMP профиля, необходимо контролировать напряжение на CPU VCCIO Voltage (VCCIO) и CPU System Agent Voltage (VCCSA).

Подобрать оптимальный уровень работы LLC, VDROOP ДОЛЖЕН БЫТЬ.

Третичные

Эти тайминги отвечают за пропускную способность памяти в МБ/с, как это делает частота в герцах.

Эти отвечают за скорость чтения:

  • tRDRD_sg
  • tRDRD_dg
  • tRDRD_dr — используется на модулях с двусторонней компоновкой чипов
  • tRDRD_dd — для систем, где все 4 разъема заняты модулями ОЗУ

Эти отвечают за скорость копирования в памяти (tWTR):

  • tRDWR_sg
  • tRDWR_dg
  • tRDWR_dr — используется на модулях с двусторонней компоновкой чипов
  • tRDWR_dd — для систем, где все 4 разъема заняты модулями ОЗУ

Скорость чтения после записи (tRTP):

  • tWRRD_sg
  • tWRRD_dg
  • tWRRD_dr — используется на модулях с двусторонней компоновкой чипов
  • tWRRD_dd — для систем, где все 4 разъема заняты модулями ОЗУ

А эти влияют на скорость записи:

  • tWRWR_sg
  • tWRWR_dg
  • tWRWR_dr — используется на модулях с двусторонней компоновкой чипов
  • tWRWR_dd — для систем, где все 4 разъема заняты модулями ОЗУ

Читайте также: