Решите уравнение sin 2x sin 3п 2 x

Обновлено: 18.05.2024

Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> --> Введите тригонометрическое уравнение
Решить уравнение

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу. Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек.

Тригонометрические уравнения

Уравнение cos(х) = а

Из определения косинуса следует, что \( -1 \leqslant \cos \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.

Уравнение cos x = а, где \( |a| \leqslant 1 \), имеет на отрезке \( 0 \leqslant x \leqslant \pi \) только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> \right] \); если a

Уравнение sin(х) = а

Из определения синуса следует, что \( -1 \leqslant \sin \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.

Уравнение sin х = а, где \( |a| \leqslant 1 \), на отрезке \( \left[ -\frac<\pi>; \; \frac<\pi> \right] \) имеет только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> \right] \); если а

Уравнение tg(х) = а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале \( \left( -\frac<\pi>; \; \frac<\pi> \right) \) только один корень. Если \( |a| \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> \right) \); если а

Решение тригонометрических уравнений

Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Уравнения, сводящиеся к квадратным

Решить уравнение 2 cos 2 (х) - 5 sin(х) + 1 = 0

Заменяя cos 2 (х) на 1 - sin 2 (х), получаем
2 (1 - sin 2 (х)) - 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) - 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y - 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = - 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; \( x = (-1)^n \text(0,5) + \pi n = (-1)^n \frac<\pi> + \pi n, \; n \in \mathbb \)
Ответ \( x = (-1)^n \frac<\pi> + \pi n, \; n \in \mathbb \)

Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) - 4 = 0

Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 - sin 2 (6х)) + 4 sin(6х) - 4 = 0 => 3 sin 2 (6х) - 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 - 4y +1 =0, откуда y1 = 1, y2 = 1/3

1) \( sin(6x) = 1 \Rightarrow 6x = \frac<\pi> +2\pi n \Rightarrow x = \frac<\pi> +\frac<\pi n>, \; n \in \mathbb \)
2) \( sin(6x) = \frac<1> \Rightarrow 6x = (-1)^n \text \frac<1> +\pi n \Rightarrow \)
\( \Rightarrow x = \frac \text \frac<1> +\frac<\pi n>, \; n \in \mathbb \)
Ответ \( x = \frac<\pi> +\frac<\pi n>, \;\; x = \frac \text \frac +\frac<\pi n>, \; n \in \mathbb \)

Уравнение вида a sin(x) + b cos(x) = c

Решить уравнение 2 sin(x) + cos(x) - 2 = 0

Используя формулы \( \sin(x) = 2\sin\frac \cos\frac, \; \cos(x) = \cos^2 \frac -\sin^2 \frac \) и записывая правую часть уравпения в виде \( 2 = 2 \cdot 1 = 2 \left( \sin^2 \frac + \cos^2 \frac \right) \) получаем

\( 4\sin\frac \cos\frac + \cos^2 \frac - \sin^2 \frac = 2\sin^2 \frac + 2\cos^2 \frac \)

Поделив это уравнение на \( \cos^2 \frac \) получим равносильное уравнение \( 3 \text^2\frac - 4 \text\frac +1 = 0 \)
Обозначая \( \text\frac = y \) получаем уравнение 3y 2 - 4y + 1 = 0, откуда y1=1, y1= 1/3

1) \( \text\frac = 1 \Rightarrow \frac = \frac<\pi> +\pi n \Rightarrow x = \frac<\pi> +2\pi n, \; n \in \mathbb \)
2) \( \text\frac = \frac \Rightarrow \frac = \text\frac +\pi n \Rightarrow x = 2 \text \frac +2\pi n, \; n \in \mathbb \)
Ответ \( x = \frac<\pi> +2\pi n, \;\; x = 2 \text \frac +2\pi n, \; n \in \mathbb \)

В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях \( a \neq 0, \; b \neq 0, \; c \neq 0, \; c^2 \leqslant b^2+c^2 \) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на \( \sqrt \):

Введём вспомогательный аргумент \( \varphi \), такой, что Таким образом, уравнение можно записать в виде
\( \sin x \cos \varphi + \cos x \sin \varphi = \frac> \)
откуда Изложенный метод преобразования уравнения вида a sin(x) + b cos(x) = c к простейшему тригонометрическому уравнению называется методом введения вспомогательного угла.

Решить уравнение 4 sin(x) + 3 cos(x) = 5

Здесь a = 4, b = 3, \( \sqrt = 5 \). Поделим обе части уравнения на 5:

\( \frac<4>\sin(x) + \frac\cos(x) = 1 \)
Введём вспомогательный аргумент \( \varphi \), такой, что \( \cos \varphi = \frac<4>, \; \sin \varphi = \frac \) Исходное уравнение можно записать в виде
\( \sin x \cos \varphi + \cos x \sin \varphi = 1, \;\; \sin(x+\varphi) = 1 \)
откуда

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Решить уравнение sin(2х) - sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) - sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x - 1) = 0

2) \( 2 \cos(x) -1 =0, \; \cos(x) = \frac12, \; x = \pm \frac<\pi> +2\pi n, \; n \in \mathbb \)

Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х - х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0

Заметим, что числа \( \pi n \) содержатся среди чисел вида \( x = \frac<\pi n>, \; n \in \mathbb \)
Следовательно, первая серия корней содержится во второй.

Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) - sin 2 (x), то
cos(2x) = 1 - sin 2 (x) - sin 2 (x), cos(2x) = 1 - 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 - cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 - cos(2x)) + 2 (1 - cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0

Данный калькулятор предназначен для решения тригонометрических уравнений.
Тригонометрические уравнения – это уравнения, которые содержат в себе тригонометрические функции неизвестного аргумента. Под тригонометрическими функциями понимают математические функции от величины угла. Как правило, тригонометрические функции определяются как отношения сторон прямоугольного треугольника или длины определенных отрезков в единичной окружности.

К основным видам тригонометрических уравнений относят простейшие уравнения, содержащие модуль, с параметрами, с целой и дробной частью, со сложными аргументами, с обратными тригонометрическими функциями.

С помощью калькулятора можно вычислить корни тригонометрического уравнения.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Здравствуйте, Дорогие друзья! В данной статье мы с вами рассмотрим решение тригонометрического уравнения, и найдём корни принадлежащие определённому (заданному) отрезку. Подобный пример мы уже рассмотрели в предыдущей статье данной рубрики. Но в этом примере мы разберём другой способ определения корней на отрезке.

а) Решите уравнение.
б) Укажите корни уравнения, принадлежащие отрезку

а) Используем формулу приведения для синуса и формулу косинуса двойного угла:

Привели уравнение к квадратному. Производим замену переменной, обозначим sin x = t.

Решая квадратное уравнение 2t 2 – t – 1 = 0, получим:

Решая sin x = 1, получим:

Решая sin x = –½, получим:

Итак, мы получили корни:

б) С помощью единичной окружности отберём корни на отрезке

Без расчётов, визуально сходу определить корни принадлежащие отрезку может далеко не каждый. Для этого необходима большая практика и отличное «понимание» тригонометрической окружности. Рассмотрим способ, при использовании которого, вы безошибочно определите корни на заданном интервале. Переведём радианы в градусы . Так как Пи радиан это 180 градусов, то отрезок

в (градусах) будет выглядеть следующим образом: [270 0 ;450 0 ]. Отберём корни.

Суть подхода такова: мы берём произвольные коэффициенты k, подставляем в каждый из корней и вычисляем. Получаем корни (углы) и смотрим – попадают ли они в интервал. Те, которые попадают мы отмечаем как верный ответ.

При k = 3 и далее можно не проверять, так как уже видно, что при этом значении k углы будут находиться вне пределов интервала.

Таким образом, отрезку [270 0 ;450 0 ] принадлежат корни 450 0 и 330 0 в радианах это

Возникает вопрос: какие «произвольные» коэффициенты k брать?

Ответ прост: в пределах от –3 до 3, так как границы заданного интервала в подобных заданиях обычно лежат «недалеко» от нуля. Для начала берите k = 0, затем по полученным значениям корней поймете какие коэффициенты брать, положительные или отрицательные.

Конечно, данный способ совершенным не назовёшь, кому-то наиболее понятен подход изложенный в уже указанной выше статье. Но он, безусловно, позволяет находить верное решение. Да и в градусной мере оценивать принадлежность угла указанному интервалу многим удобнее.

Кстати, если сравнивать объём вычислений представленного способа и описанного в уже указанной статье (см. ссылку выше), то он практически одинаков.

а) Решите уравнение

б) Найдите корни этого уравнения, принадлежащие промежутку

а) Преобразуем уравнение:

б) Отберём с помощью единичной окружности корни уравнения, принадлежащие промежутку

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

а) Выделим полный квадрат:

б) При помощи тригонометрической окружности отберём корни, принадлежащие отрезку Получим

Могу ли я записать пункт а) x = +- П/4 + 2ПК ; +- 3П/4 + 2ПК ?

А еще можно так: , где

Здравствуйте ! Почему такой ответ у вас? У меня получилось х= +-пи/4 + Пn

Если я запишу такой ответ , мне уже не посчитают его правильным ?? Ведь у проверяющего будет один ответ , а не несколько вариантов ответа.

Читайте также: