Найти все первообразные функции f x x4

Обновлено: 19.05.2024

После вычисления неопределённого интеграла, вы сможете получить бесплатно ПОДРОБНОЕ решение введённого вами интеграла.

Найдем решение неопределенного интеграла от функции f(x) (первообразную функции).

Примеры

С применением степени
(квадрат и куб) и дроби

С применением синуса и косинуса

Гиберболические синус и косинус

Гиберболические тангенс и котангенс

Гиберболические арксинус и арккосинус

Гиберболические арктангенс и арккотангенс

Правила ввода выражений и функций
Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x|) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x exp(x) Функция - экспонента от x (что и e^x) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10)) sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x ctg(x) Функция - Котангенс от x arcctg(x) Функция - Арккотангенс от x arcctgh(x) Функция - Гиперболический арккотангенс от x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x gamma(x) Гамма-функция LambertW(x) Функция Ламберта x! или factorial(x) Факториал от x В выражениях можно применять следующие операции: Действительные числа вводить в виде 7.5, не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание 15/7 - дробь
Другие функции: asec(x) Функция - арксеканс от x acsc(x) Функция - арккосеканс от x sec(x) Функция - секанс от x csc(x) Функция - косеканс от x floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) ceiling(x) Функция - округление x в большую сторону (пример ceiling(4.5)==5.0) sign(x) Функция - Знак x erf(x) Функция ошибок (или интеграл вероятности) laplace(x) Функция Лапласа asech(x) Функция - гиперболический арксеканс от x csch(x) Функция - гиперболический косеканс от x sech(x) Функция - гиперболический секанс от x acsch(x) Функция - гиперболический арккосеканс от x
Постоянные: pi Число "Пи", которое примерно равно

3.14159.. e Число e - основание натурального логарифма, примерно равно

2,7183.. i Комплексная единица oo Символ бесконечности - знак для бесконечности

Этот математический калькулятор онлайн поможет вам вычислить неопределенный интеграл (первообразную). Программа для вычисления неопределенного интеграла (первообразной) не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс интегрирования функции.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> --> Введите подинтегральную функцию Вычислить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу. Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек.

Первообразная (неопределенный интеграл)

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача — задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) — искомый закон движения. Известно, что s'(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \( s(t) = \frac \). В самом деле
\( s'(t) = \left( \frac \right)' = \frac(t^2)' = \frac \cdot 2t = gt \)
Ответ: \( s(t) = \frac \)

Сразу заметим, что пример решен верно, но неполно. Мы получили \( s(t) = \frac \). На самом деле задача имеет бесконечно много решений: любая функция вида \( s(t) = \frac + C \), где C — произвольная константа, может служить законом движения, поскольку \( \left( \frac +C \right)' = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s0, то из равенства s(t) = (gt 2 )/2 + C получаем: s(0) = 0 + С, т. е. C = s0. Теперь закон движения определен однозначно: s(t) = (gt 2 )/2 + s0.

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2 ) и извлечение квадратного корня ( \( \sqrt \) ), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием, а обратную операцию, т. е. процесс нахождения функции по заданной производной, — интегрированием.

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у' = f'(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у' = f'(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \( x \in X \) выполняется равенство F'(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2 )' = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3 )' = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))' = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) — первообразная для f(x), то kF(x) — первообразная для kf(x).

Теорема 1. Если y = F(x) — первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \( y=\fracF(kx+m) \)

Теорема 2. Если y = F(x) — первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \( \textstyle \int F(x)dx \). Сделаем подстановку \( x= \varphi(t) \) где \( \varphi(t) \) — функция, имеющая непрерывную производную.
Тогда \( dx = \varphi ' (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\( \int F(x) dx = \int F(\varphi(t)) \cdot \varphi ' (t) dt \)

Интегрирование выражений вида \( \textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям — применение следующей формулы для интегрирования:
\( \textstyle \int u \cdot dv = u \cdot v - \int v \cdot du \)
или:
\( \textstyle \int u \cdot v' \cdot dx = u \cdot v - \int v \cdot u' \cdot dx \)

Алгоритм исследования построения графика функции


Построение графика функции методом дифференциального исчисления

Экстремум функции двух переменных

Приемы нахождения неопределенных интегралов

Пример 1. Вычислить ∫ (3x+15) 17 dx .
Решение.
Возводить двучлен в 17-ю степень нецелесообразно. Исходя из табличного интеграла , получаем
= .
Пример 2. Вычислить .
Решение.
Аналогично предыдущему,
=


Пример 3. .
Решение. Поскольку
, то .

Пример 4. Вычислить
Решение. Так как
, то .

Пример 5. Вычислить .
Решение.
Применим подстановку . Отсюда x-5=t 2 , x=t 2 +5 , dx=2tdt .
Подставив в интеграл, получим

Пример 6. Вычислить ∫ x 2 e x dx .
Решение.
Положим u=x 2 , dv=e x dx ; тогда du=2xdx , v=e x . Применим формулу интегрирования по частям:
∫x 2 e x dx=x 2 e x -2∫xe x .
Мы добились понижения степени x на единицу. Чтобы найти ∫xe x , применим еще раз интегрирование по частям. Полагаем u=x , dv=e x dx ; тогда du=dx , v=e x и
∫xe x =x 2 e x -2xe x +2e x +C .

Пример 7. Вычислить .
Решение. Выделяя целую часть, получим: .
Учитывая, что x 4 +5x 2 +4=(x 2 +1)(x 2 +4) , для второго слагаемого получаем разложение

Приводя к общему знаменателю, получим равенство числителей:
-5x 2 –4=(Ax+B)(x 2 +4)+(Cx+D)(x 2 +1) .
Приравнивая коэффициенты при одинаковых степенях x, получаем
x 3 : 0=A+C
x2: -5=B+D
x: 0=4A+C
x 0 : -4=4B+D

Отсюда находим A=C=0 , B= 1 /3 , D=- 16 /3 .
Подставляя найденные коэффициенты в разложение и интегрируя его, получаем:

Пример 8. Вычислить .
Решение. Так как
,
то подынтегральное выражение есть рациональная функция от x и ; поэтому введем подстановку:
; ,
откуда
; ; ;.
Следовательно,

Пример 9. Вычислить .
Решение.
Подынтегральная функция рационально зависит от sinx(x) и cos(x) ; применим подстановку tg x /2=t , тогда
, , и
=
Возвращаясь к старой переменной, получим
= .

Пример 10. Вычислить .
Решение.
Произведем замену 1+3x 8 = z 2 . Тогда , ;
таким образом,
.
Следует обратить внимание, что при замене переменной в определенном интеграле пределы интегрирования в общем случае изменяются.

Пример 12. Вычислить несобственный интеграл или доказать его расходимость.
Решение.
Подынтегральная функция непрерывна и интегрируема на R . По определению = =

Пример 13. Найти площадь фигуры, ограниченной параболой y=x 2 и прямой x+y=2 .
Решение.
Найдем абсциссы точек пересечения параболы y=x 2 и прямой y=2-x . Решая уравнение x 2 =2-x , находим x1=-2 , x2=1 . Так как фигура ограничена сверху прямой, а снизу параболой, по известной формуле находим
.

Читайте также: