Функция y cos x c sin x является общим решением дифференциального уравнения

Обновлено: 06.07.2024

Решение уравнения будем искать в виде y = erx с помощью калькулятора. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:

D = 22 - 4 • 1 • 0 = 4

Корни характеристического уравнения:

Следовательно, фундаментальную систему решений составляют функции:

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть:

Поиск частного решения.

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:

R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) - некоторые полиномы

имеет частное решение

y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

где k - кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) - полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 0, Q(x) = 0, α = 1, β = 1.

Следовательно, число α + βi = 1 + 1i не является корнем характеристического уравнения .

Уравнение имеет частное решение вида:

y* = ex(Acos(x) + Bsin(x))

которые подставляем в исходное дифференциальное уравнение:

y'' + 2y' = (2•ex(B•cos(x)-A•sin(x))) + 2(ex((B-A)•sin(x)+(A+B)•cos(x))) = 3•ex•(cos(x)+sin(x))

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решение уравнения будем искать в виде y = e rx находим с помощью калькулятора. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 +4 r - 12 = 0
D = 4 2 - 4 • 1 • (-12) = 64

Корни характеристического уравнения:
r1 = 2
r2 = -6
Следовательно, фундаментальную систему решений составляют функции:

Общее решение однородного уравнения имеет вид:

Пример 2.
4y’’ -8y’ + 5y = 5cos(x)
Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
4 r 2 -8 r + 5 = 0
D = (-8) 2 - 4 • 4 • 5 = -16

Корни характеристического уравнения:
(комплексные корни):
r1 = 1 + 1 /2i
r1 = 1 - 1 /2i
Следовательно, фундаментальную систему решений составляют функции:
y1 = e x cos( 1 /2x)
y2 = e x sin( 1 /2x)
Общее решение однородного уравнения имеет вид:

Пример 3.
y''+3y'+2y=-24e -4x -20sin(2x)
Решаем в два этапа:
а) y''+3y'+2y=-24e -4x
б) y''+3y'+2y=-20sin(2x)
Затем объединяем полученные решения.

Например, решить дифференциальное уравнение онлайн: y''-2y+1=sinx . Записываем как y''-2*y+1=sin(x) . Для отображение хода решения нажмите Show steps или Step-by-step .

Способы решений дифференциальных уравнений

    : y'=e x+y , xydx+(x+1)dy=0 : (y 2 -2xy)dx+x 2 dy=0 . Калькулятор Линейные уравнения первого порядка : y'+2y=4x : y'+2xy=2xy 3 , : 2xydx+x 2 dy=0 , 2xydx=(x 2 -y 2 )dy=0 .
      : yy'''=y'y'' , (y') 2 +2yy''=0 : y''-3y'+2y=0 , y''-2y'+5y =e x
    :
    Однородные системы линейных дифференциальных уравнений с постоянными коэффициентами:
    Метод вариации произвольной постоянной

Пример . Найти частное решение дифференциального уравнения y'+xy=x , удовлетворяющего начальному условию y(0)=2 .
Решение.
Данное дифференциальное уравнение – уравнение 1-го порядка, линейное относительно неизвестной функции y.
Применяя метод Бернулли для решения этого уравнения, сделаем замену y(x) = u(x)·v(x) , где u(x) и v(x) – неизвестные функции, которые мы будем искать поочередно.
Согласно правилу дифференцирования произведения, имеем:
y′ = u′·v+u·v′.
Подставляя выражения для y и y' в исходное уравнение, получим:
u′·v+u·v′ + x·u·v = x (*)
Отсюда
u′·v + (u·v′ + x·u·v) = x;
u′·v + u(v′ + x·v) = x;
Выражение в скобках зависит только от v(x) . Будем искать v(x) , исходя из условия:
v′ + x·v = 0.
Рассматривая это равенство как дифференциальное уравнение, найдём частное решение для v(x) методом разделения переменных:
; ;
Переходим к интегралу:
; ; .
Подставим найденную функцию v(x) в уравнение (*):
; .
Найдём теперь общее решение для неизвестной функции u(x) :
.
Окончательно, имеем общее решение исходного дифференциального уравнения:
.
Теперь, используем данное начальное условие и найдём частное решение уравнения:
y(0) = c·e 0 +1 = c+1 = 2
Отсюда c=1 ,
Ответ: частное решение дифференциального уравнения имеет вид: .

где
$$p = 0$$
$$q = 1$$
$$s = - \cos<\left(x \right)>$$
Называется линейным неоднородным
дифф. ур-нием 2-го порядка с постоянными коэффициентами.
Решить это ур-ние не представляет особой сложности
Решим сначала соответствующее линейное однородное ур-ние

Сначала отыскиваем корни характеристического ур-ния
$$q + \left(k^ + k p\right) = 0$$
В нашем случае характ. ур-ние будет иметь вид:
$$k^ + 1 = 0$$
Подробное решение простого уравнения
- это простое квадратное ур-ние
Корни этого ур-ния:
$$k_ = - i$$
$$k_ = i$$
Т.к. характ. ур-ние имеет два корня,
и корни имеют чисто мнимый вид, то
решение соотв. дифф. ур-ния имеет вид:
$$y <\left(x \right)>= C_ \sin<\left(x \left|\right| \right)> + C_ \cos<\left(x \left|\right| \right)>$$
$$y <\left(x \right)>= C_ \sin <\left(x \right)>+ C_ \cos<\left(x \right)>$$

Мы нашли решение соотв. однородного ур-ния
Теперь надо решить наше неоднородное уравнение

Используем метод вариации произвольной постоянной
Считаем, что C1 и C2 - это функции от x

Читайте также: